FreeCalypso > hg > freecalypso-sw
comparison gsm-fw/L1/cfile/l1_ctl.c @ 544:96a96ec34139
gsm-fw/L1/cfile: initial import from LoCosto source
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Sun, 03 Aug 2014 06:06:45 +0000 |
parents | |
children | 81cef37b96f9 |
comparison
equal
deleted
inserted
replaced
543:2dccd2b4e5a2 | 544:96a96ec34139 |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * L1_CTL.C | |
4 * | |
5 * Filename l1_ctl.c | |
6 * Copyright 2003 (C) Texas Instruments | |
7 * | |
8 ************* Revision Controle System Header *************/ | |
9 | |
10 #define L1_CTL_C | |
11 | |
12 #include "l1_macro.h" | |
13 #include "l1_confg.h" | |
14 | |
15 #if (CODE_VERSION == SIMULATION) | |
16 #include <string.h> | |
17 #include "l1_types.h" | |
18 #include "sys_types.h" | |
19 #include "l1_const.h" | |
20 #include "l1_time.h" | |
21 #include "l1_signa.h" | |
22 | |
23 #if TESTMODE | |
24 #include "l1tm_defty.h" | |
25 #endif | |
26 #if (AUDIO_TASK == 1) | |
27 #include "l1audio_const.h" | |
28 #include "l1audio_cust.h" | |
29 #include "l1audio_signa.h" | |
30 #include "l1audio_defty.h" | |
31 #include "l1audio_msgty.h" | |
32 #endif | |
33 #if (L1_GTT == 1) | |
34 #include "l1gtt_const.h" | |
35 #include "l1gtt_defty.h" | |
36 #endif | |
37 #if (L1_MP3 == 1) | |
38 #include "l1mp3_defty.h" | |
39 #endif | |
40 #if (L1_MIDI == 1) | |
41 #include "l1midi_defty.h" | |
42 #endif | |
43 //ADDED FOR AAC | |
44 #if (L1_AAC == 1) | |
45 #include "l1aac_defty.h" | |
46 #endif | |
47 #include "l1_defty.h" | |
48 #include "cust_os.h" | |
49 #include "l1_msgty.h" | |
50 #include "l1_varex.h" | |
51 #include "l1_proto.h" | |
52 #include "l1_mftab.h" | |
53 #include "l1_tabs.h" | |
54 #include "l1_ver.h" | |
55 #if L2_L3_SIMUL | |
56 #include "hw_debug.h" | |
57 #endif | |
58 | |
59 #if TESTMODE | |
60 #include "l1tm_msgty.h" | |
61 #include "l1tm_varex.h" | |
62 #endif | |
63 | |
64 #include "l1_ctl.h" | |
65 | |
66 #ifdef _INLINE | |
67 #define INLINE static inline // Inline functions when -v option is set | |
68 #else // when the compiler is ivoked. | |
69 #define INLINE | |
70 #endif | |
71 #else | |
72 #include <string.h> | |
73 #include "l1_types.h" | |
74 #include "sys_types.h" | |
75 #include "l1_const.h" | |
76 #include "l1_time.h" | |
77 #include "l1_signa.h" | |
78 | |
79 #if (RF_FAM == 61) | |
80 #include "tpudrv61.h" | |
81 #endif | |
82 | |
83 #if TESTMODE | |
84 #include "l1tm_defty.h" | |
85 #endif | |
86 #if (AUDIO_TASK == 1) | |
87 #include "l1audio_const.h" | |
88 #include "l1audio_cust.h" | |
89 #include "l1audio_defty.h" | |
90 #endif | |
91 #if (L1_GTT == 1) | |
92 #include "l1gtt_const.h" | |
93 #include "l1gtt_defty.h" | |
94 #endif | |
95 #if (L1_MP3 == 1) | |
96 #include "l1mp3_defty.h" | |
97 #endif | |
98 #if (L1_MIDI == 1) | |
99 #include "l1midi_defty.h" | |
100 #endif | |
101 //ADDED FOR AAC | |
102 #if (L1_AAC == 1) | |
103 #include "l1aac_defty.h" | |
104 #endif | |
105 #include "l1_defty.h" | |
106 #include "cust_os.h" | |
107 #include "l1_msgty.h" | |
108 #include "l1_varex.h" | |
109 #include "l1_proto.h" | |
110 #include "l1_tabs.h" | |
111 #include "l1_ctl.h" | |
112 #if L2_L3_SIMUL | |
113 #include "hw_debug.h" | |
114 #endif | |
115 | |
116 #if TESTMODE | |
117 #include "l1tm_msgty.h" | |
118 #include "l1tm_varex.h" | |
119 #endif | |
120 #if (OP_L1_STANDALONE == 1) | |
121 #ifdef _INLINE | |
122 #define INLINE static inline // Inline functions when -v option is set | |
123 #else // when the compiler is ivoked. | |
124 #define INLINE | |
125 #endif | |
126 #endif //omaps00090550 | |
127 #endif | |
128 | |
129 #if(RF_FAM == 61) | |
130 #include "l1_rf61.h" | |
131 #endif | |
132 | |
133 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
134 #include "l1_trace.h" | |
135 #endif | |
136 | |
137 extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq); | |
138 extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc); | |
139 | |
140 | |
141 #define LNA_OFF 1 | |
142 #define LNA_ON 0 | |
143 | |
144 | |
145 | |
146 | |
147 /************************************/ | |
148 /* Automatic frequency compensation */ | |
149 /************************************/ | |
150 | |
151 #define L1_WORD16_POS_MAX (32767) | |
152 #define L1_WORD16_NEG_MAX (-32768) | |
153 #define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1) | |
154 #define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31)) | |
155 | |
156 INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2) | |
157 { | |
158 WORD32 temp; | |
159 WORD16 result; | |
160 | |
161 temp = (WORD32)((WORD32)val1 + (WORD32)val2); | |
162 if(temp > L1_WORD16_POS_MAX) | |
163 { | |
164 temp = L1_WORD16_POS_MAX; | |
165 } | |
166 if(temp < L1_WORD16_NEG_MAX) | |
167 { | |
168 temp = L1_WORD16_NEG_MAX; | |
169 } | |
170 result = (WORD16)((temp)&(0x0000FFFF)); | |
171 return(result); | |
172 } | |
173 | |
174 INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2) | |
175 { | |
176 WORD32 temp_high_high; | |
177 UWORD32 temp_low_low; | |
178 UWORD16 carry; | |
179 WORD32 result; | |
180 WORD16 high_val1, high_val2; | |
181 UWORD16 low_val1, low_val2; | |
182 | |
183 high_val1 = (WORD16)(val1>>16); | |
184 high_val2 = (WORD16)(val2>>16); | |
185 low_val1 = (UWORD16)(val1&0x0000FFFF); | |
186 low_val2 = (UWORD16)(val2&0x0000FFFF); | |
187 | |
188 temp_high_high = (WORD32)high_val1 + (WORD32)high_val2; | |
189 temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2; | |
190 carry = (UWORD16)(temp_low_low >> 16); | |
191 temp_high_high = temp_high_high + (UWORD32)(carry); | |
192 | |
193 | |
194 result = val1 + val2; | |
195 if(temp_high_high > L1_WORD16_POS_MAX) | |
196 { | |
197 result = L1_WORD32_POS_MAX; | |
198 } | |
199 if(temp_high_high < L1_WORD16_NEG_MAX) | |
200 { | |
201 result = L1_WORD32_NEG_MAX; | |
202 } | |
203 | |
204 return(result); | |
205 } | |
206 | |
207 INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2) | |
208 { | |
209 WORD32 result; | |
210 | |
211 result = val1 * val2; | |
212 if(val1>0) /* val2 is > 0*/ | |
213 { | |
214 if(result < 0) /* overflow */ | |
215 { | |
216 result = L1_WORD32_POS_MAX; | |
217 } | |
218 } | |
219 if(val1<0) /* val2 is > 0*/ | |
220 { | |
221 if(result > 0) /* overflow */ | |
222 { | |
223 result = L1_WORD32_NEG_MAX; | |
224 } | |
225 } | |
226 return(result); | |
227 } | |
228 | |
229 | |
230 INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout ) | |
231 { | |
232 WORD32 result, temp, carry, Lvar1, Lvar2; | |
233 WORD16 guard1,guard2; | |
234 | |
235 guard1=(WORD16) ((WORD32) guard1guard2>>16); | |
236 guard2=(WORD16) guard1guard2; | |
237 | |
238 /* lvar1 and lvar2 are both 48 bits variables */ | |
239 /* We 1st add the low parts of lvar1 and lvar2 and we give */ | |
240 /* a 32 bits result and a carry if needed */ | |
241 Lvar1 = (UWORD16)lvar1; | |
242 Lvar2 = (UWORD16)lvar2; | |
243 | |
244 temp = Lvar1 + Lvar2; | |
245 | |
246 carry = temp >> 16; | |
247 | |
248 result = temp & 0x0000ffffL; | |
249 | |
250 /* We now add the two high parts of var1 and var2 (scaled */ | |
251 /* to a 16 bits format) and carry (if any) and we give a */ | |
252 /* 48 bits results. */ | |
253 Lvar1 = (UWORD32)lvar1 >> 16; | |
254 Lvar2 = (UWORD32)lvar2 >> 16; | |
255 | |
256 temp = Lvar1 + Lvar2 + carry; | |
257 | |
258 carry = (UWORD32)temp >> 16; | |
259 | |
260 temp = (UWORD32)temp << 16; | |
261 | |
262 result = result | temp; | |
263 | |
264 temp = guard1 + guard2 + carry; | |
265 | |
266 *guardout = (WORD16)temp; | |
267 | |
268 return( result ); | |
269 } | |
270 | |
271 | |
272 INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) | |
273 { | |
274 WORD32 mult,guard1guard2; | |
275 WORD32 aux1; | |
276 UWORD32 aux2; | |
277 WORD16 neg_flag=0; | |
278 WORD32 var1_low_nosign,var2_nosign; | |
279 | |
280 if (var2<0) | |
281 { | |
282 var2=-var2; | |
283 neg_flag=1; | |
284 } | |
285 | |
286 /*aux1 = AccHigh(var1)*var2 */ | |
287 aux1 = (WORD32)(var1>>16) * (WORD32)var2; | |
288 /* 16 bits * 16 bits -> 32 bits result */ | |
289 | |
290 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ | |
291 /* Performs the sign suppression of the words */ | |
292 var1_low_nosign = (UWORD16)var1; | |
293 var2_nosign = (UWORD16) var2; | |
294 | |
295 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; | |
296 | |
297 /*Shift aux1=F48 of 16 bit left */ | |
298 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ | |
299 /*guard2=0x0000 */ | |
300 aux1=aux1<<16; | |
301 | |
302 | |
303 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ | |
304 /* aux1 and aux2 are both 48 bits variables */ | |
305 /* We first add the low pats of aux1 and aux2 and we give*/ | |
306 /* a 32 bits result and a carry if needed */ | |
307 mult=Add_40b(guard1guard2,aux1,aux2,guardout ); | |
308 | |
309 if (neg_flag) | |
310 { | |
311 mult=-mult; | |
312 if (*guardout!=0) | |
313 *guardout=-(*guardout)-1; | |
314 else | |
315 *guardout=-1; | |
316 } | |
317 | |
318 return(mult); | |
319 } | |
320 | |
321 | |
322 /***********************************************************************/ | |
323 /* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */ | |
324 /* variables. Result is WORD32. */ | |
325 /***********************************************************************/ | |
326 INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) | |
327 { | |
328 WORD32 mult,guard1guard2; | |
329 UWORD32 aux1,aux2; | |
330 WORD32 var1_high_nosign,var1_low_nosign,var2_nosign; | |
331 | |
332 | |
333 /*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */ | |
334 /* Performs the sign suppression of the words */ | |
335 var1_high_nosign = (UWORD32)var1>>16; | |
336 var2_nosign = (UWORD16) var2; | |
337 | |
338 aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign; | |
339 | |
340 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ | |
341 /* Performs the sign suppression of the words */ | |
342 var1_low_nosign = (WORD32)((UWORD16)var1); | |
343 | |
344 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; | |
345 | |
346 /*Shift aux1=F48 of 16 bit left */ | |
347 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ | |
348 /*guard2=0x0000 */ | |
349 aux1=aux1<<16; | |
350 | |
351 | |
352 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ | |
353 mult=Add_40b(guard1guard2,aux1,aux2,guardout); | |
354 | |
355 return(mult); | |
356 } | |
357 | |
358 | |
359 /*-------------------------------------------------------*/ | |
360 /* l1ctl_afc() */ | |
361 /*-------------------------------------------------------*/ | |
362 /* Parameters : */ | |
363 /* Return : */ | |
364 /* Functionality : */ | |
365 /*-------------------------------------------------------*/ | |
366 #if (VCXO_ALGO == 0) | |
367 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq) | |
368 #else | |
369 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode) | |
370 #endif | |
371 { | |
372 /*************************/ | |
373 /* Variables declaration */ | |
374 /*************************/ | |
375 WORD16 i=0; | |
376 UWORD32 denom; /* F12.20 */ | |
377 WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2; | |
378 static UWORD32 P=C_cov_start; /* F12.20 */ | |
379 static WORD32 Psi=0; /* F13.19 */ | |
380 static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */ | |
381 WORD16 var_16; | |
382 WORD16 Phi=0; /* F1.15 */ | |
383 WORD16 quotient,guard1,guard2,guardout; | |
384 UWORD32 LGuard; | |
385 WORD16 denomH,denomH_3msb; | |
386 UWORD32 K=0; /* algo 1 */ | |
387 | |
388 static WORD16 old_Psi_quant[C_N_del+1]; | |
389 static WORD32 old_Psi=0; | |
390 | |
391 #if (VCXO_ALGO == 1) | |
392 static WORD32 psi_past[C_N_del+1]; /* F13.19 */ | |
393 static WORD16 psi_quant; /* F13.3 */ | |
394 static WORD16 quant_avg; | |
395 static UWORD32 M_Count; | |
396 static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array | |
397 static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr | |
398 UWORD16 L = 10433; // Gain algo2 | |
399 static UWORD16 first_avg; | |
400 static UWORD16 good_snr; | |
401 | |
402 /* to be able to keep in memory the old AFC variables in case of spurious | |
403 FB detection */ | |
404 static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */ | |
405 static WORD16 old_psi_quant; /* F13.3 */ | |
406 | |
407 #endif | |
408 #if (L1_FF_MULTIBAND == 1) | |
409 UWORD8 physical_band_id; | |
410 #endif | |
411 | |
412 | |
413 //Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR. | |
414 if(l1_mode==I_MODE)//MS is in Idle mode | |
415 L = 41732; //F0.20 L=41732/2^20 = 0.04 | |
416 else //All other modes than Idle | |
417 L = 10433; //F0.20 L=10433/2^20 = 0.01 | |
418 | |
419 | |
420 #if (L1_FF_MULTIBAND == 0) | |
421 | |
422 if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) && | |
423 #if (VCXO_ALGO == 1) | |
424 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) | |
425 #else | |
426 (phase != AFC_INIT)) | |
427 #endif | |
428 { | |
429 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
430 { | |
431 angle = (angle + 1) >> 1; | |
432 } | |
433 } | |
434 | |
435 else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) && | |
436 #if (VCXO_ALGO == 1) | |
437 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) | |
438 #else | |
439 (phase != AFC_INIT)) | |
440 #endif | |
441 { | |
442 angle = (angle + 1) >> 1; | |
443 } | |
444 | |
445 #else // L1_FF_MULTIBAND = 1 below | |
446 | |
447 #if (VCXO_ALGO == 1) | |
448 if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)) | |
449 #else | |
450 if(phase != AFC_INIT) | |
451 #endif | |
452 { | |
453 physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq); | |
454 | |
455 if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900)) | |
456 { | |
457 angle = (angle + 1) >> 1; | |
458 } | |
459 } | |
460 | |
461 #endif // #if (L1_FF_MULTIBAND == 1) else | |
462 | |
463 | |
464 | |
465 /*********************************/ | |
466 /* frequency offset compensation */ | |
467 /*********************************/ | |
468 /* Initialization */ | |
469 | |
470 #if (VCXO_ALGO == 1) | |
471 switch (l1_config.params.afc_algo) | |
472 { | |
473 | |
474 /* algo1 only: */ | |
475 case ALGO_AFC_KALMAN: | |
476 { | |
477 #endif | |
478 #if (VCXO_ALGO == 0) | |
479 if (phase==AFC_INIT) | |
480 { | |
481 // WARNING | |
482 // In this case, "angle" variable contains EEPROM_AFC initialization value | |
483 // directly loaded from EEPROM, and "snr" variable is not meaningful. | |
484 /* Static variables initialisation */ | |
485 P=C_cov_start; | |
486 Psi=0; | |
487 if (angle>C_max_step) | |
488 Psi_quant[C_N_del]=C_max_step; | |
489 else | |
490 if(angle<C_min_step) | |
491 Psi_quant[C_N_del]=C_min_step; | |
492 else Psi_quant[C_N_del]=angle; | |
493 | |
494 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ | |
495 } /* end AFC_INIT*/ | |
496 else | |
497 { | |
498 if (phase==AFC_OPEN_LOOP) | |
499 { | |
500 /* delay line for Psi_quant values */ | |
501 for (i=1;i<=C_N_del;i++) | |
502 Psi_quant[i-1]=Psi_quant[i]; | |
503 | |
504 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; | |
505 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
506 | |
507 #if(RF_FAM == 61) | |
508 /* In order to implement the NINT function for a F16.0, we check */ | |
509 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
510 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
511 var_16=quotient*4; | |
512 #else | |
513 /* In order to implement the NINT function for a F16.0, we check */ | |
514 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
515 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
516 var_16=quotient*8; | |
517 #endif | |
518 if (var_16>C_max_step) | |
519 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); | |
520 else | |
521 if(var_16<C_min_step) | |
522 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); | |
523 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ | |
524 | |
525 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ | |
526 }/*end if AFC_OPEN_LOOP*/ | |
527 | |
528 else | |
529 { | |
530 /* delay line for Psi_quant values */ | |
531 for (i=1;i<=C_N_del;i++) | |
532 Psi_quant[i-1]=Psi_quant[i]; | |
533 | |
534 /********************/ | |
535 /* Filter algorithm */ | |
536 /********************/ | |
537 | |
538 /* Covariance error is increased of C_Q */ | |
539 P=P+(*frame_count)*C_Q; | |
540 | |
541 /* Clipping of P */ | |
542 if (P>C_thr_P) P=C_thr_P; | |
543 | |
544 if (snr>=C_thr_snr) | |
545 { | |
546 /* Clipping of error angle */ | |
547 if (angle>C_thr_phi) | |
548 angle=C_thr_phi; | |
549 if (angle<-C_thr_phi) | |
550 angle=-C_thr_phi; | |
551 | |
552 /* Kalman gain */ | |
553 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ | |
554 /*C_a0_kalman=0.01 */ | |
555 /*C_g_kalman =0.05 */ | |
556 num=(C_g_kalman/snr)+P+C_a0_kalman; | |
557 /* (F2.30 / F6.10) = F 12.20 */ | |
558 | |
559 /* denom = P << 19 = F 1.39 */ | |
560 /* extension of denom=P to a 40 bits variable */ | |
561 /* denom (F12.20) << 16 = F 4.36 */ | |
562 guard1=(WORD16)((WORD32)P>>16); | |
563 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ | |
564 denomH=(UWORD16)P; | |
565 /* Low part of denom is equal to 0, because P has been 16 */ | |
566 /* bits left shifted previously. */ | |
567 denomH_3msb=(denomH>>13)&0x0007; | |
568 guard1=(guard1<<3)|denomH_3msb; | |
569 denomH<<=3; | |
570 denom=(UWORD32)denomH<<16; | |
571 /* num + guard1 are a 40 bits representation of P */ | |
572 /* In order to compute P(F1.39)/num, we sample P in guard1 */ | |
573 /* (scaled to a 32 bits number) and num (32 bits number) */ | |
574 /* K = ((guard1<<24)/num)<<8 + (denom/num) */ | |
575 var1=(WORD32)guard1<<24; | |
576 var1=var1/num; | |
577 var1=(WORD32)var1<<8; | |
578 /* var2 is an unsigned variable, var1 contains signed guard*/ | |
579 /* bits. */ | |
580 var2=denom/num; | |
581 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ | |
582 /* F13.19 << 1 = F12.20 */ | |
583 | |
584 /* Clipping of the Kalman gain */ | |
585 if (K>=C_thr_K) | |
586 K=C_thr_K; | |
587 | |
588 /*******************************************************/ | |
589 /* P=(1-K)*P = 0.8 * 0.5 at maximum */ | |
590 /*******************************************************/ | |
591 /* Perform a positive variable F12.20 multiplication by*/ | |
592 /* positive variable F12.20 */ | |
593 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ | |
594 guard1=0; /* positive variable */ | |
595 var1=UMult_40b(P,var_16,&guard1); | |
596 var_16=(WORD16)((1048576L-K)>>16); | |
597 /* acchigh(1-K) = F12.20 */ | |
598 var2=P*var_16; /* var2 = 0x80000 * 0xc */ | |
599 /* at maximum, so result */ | |
600 /* is 32 bits WORD32 and */ | |
601 /* equal 0x600000 */ | |
602 /* extension of var2 to a 40 bits variable : var2<<16 */ | |
603 guard2=(WORD16)((WORD32)var2>>16); | |
604 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); | |
605 var2=var2<<16; | |
606 var_32=Add_40b(guard1guard2,var1,var2,&guardout); | |
607 /* var_32 (F8.40) >> 16 = F8.24 */ | |
608 LGuard=(WORD32)guardout<<16; | |
609 var1=(UWORD32)var_32>>16; | |
610 /* var_32 >> 4 = F12.20 */ | |
611 P=(var1+LGuard)>>4; | |
612 | |
613 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); | |
614 /* F0.32 * F13.3 = F5.35 */ | |
615 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ | |
616 /* F13.19 */ | |
617 var1=(UWORD32)Phi_32>>16; | |
618 Phi_32=Psi-(LGuard+var1); /* F13.19 */ | |
619 | |
620 /*Phi=angle-Phi_32*/ | |
621 Phi_32=((WORD32)angle<<4)-Phi_32; | |
622 /* F1.15 * 4 = F13.19 */ | |
623 Phi=(WORD16)(Phi_32>>4); /* F17.15 */ | |
624 /*var1=K*Phi F12.20 * F1.15 = 13.35 */ | |
625 guard1=0; | |
626 var1=Mult_40b(K,Phi,&guard1); | |
627 /* var1 (F13.35) >> 16 */ | |
628 /* F13.19 */ | |
629 LGuard=(WORD32)guard1<<16; | |
630 var1=(UWORD32)var1>>16; | |
631 Psi+=var1+LGuard; | |
632 }/*if snr */ | |
633 | |
634 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); | |
635 /* F13.19 * C = F13.19 */ | |
636 | |
637 #if(RF_FAM == 61) | |
638 /* In order to implement the NINT function for a F13.3, we check */ | |
639 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
640 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
641 var_16=quotient*4; | |
642 #else | |
643 /* In order to implement the NINT function for a F13.3, we check */ | |
644 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
645 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
646 var_16=quotient*8; | |
647 #endif | |
648 if (var_16>C_max_step) | |
649 Psi_quant[C_N_del]=C_max_step; | |
650 else | |
651 if(var_16<C_min_step) | |
652 Psi_quant[C_N_del]=C_min_step; | |
653 else Psi_quant[C_N_del]=var_16; /* F13.3 */ | |
654 | |
655 }/*end AFC_CLOSE_LOOP*/ | |
656 } /* end else AFC_INIT*/ | |
657 | |
658 *frame_count=0; | |
659 //Locosto | |
660 // return(Psi_quant[C_N_del]>>3); /* F16.0 */ | |
661 return(CONVERT_PSI_QUANT(Psi_quant[C_N_del])); /* F16.0 to 14.2 or 13.3 */ | |
662 | |
663 #else | |
664 | |
665 } /* end case algo 1 */ | |
666 | |
667 | |
668 /* algo2 + init + estimator/predictor */ | |
669 case ALGO_AFC_LQG_PREDICTOR: | |
670 { | |
671 /******************************************************************/ | |
672 /* (New) VCXO Algorithm */ | |
673 /******************************************************************/ | |
674 | |
675 switch (phase) { | |
676 case AFC_INIT_CENTER : | |
677 case AFC_INIT_MAX : | |
678 case AFC_INIT_MIN : | |
679 quant_avg = 0; | |
680 M_Count = 0; | |
681 for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550 | |
682 psi_avg[i] = 0; | |
683 first_avg = 1; | |
684 good_snr = 0; | |
685 | |
686 // DAC search algorithm is as follows - up to 12 attempts are made | |
687 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> | |
688 // The first four attempts are made on DAC_center | |
689 // The next four attempts are made on DAC_max | |
690 // The last four attempts are made on DAC_min | |
691 // There are statistical reasons for trying four times | |
692 | |
693 switch (phase) | |
694 { | |
695 case AFC_INIT_CENTER: | |
696 psi_quant = l1_config.params.afc_dac_center; | |
697 break; | |
698 case AFC_INIT_MAX: | |
699 psi_quant = l1_config.params.afc_dac_max; | |
700 break; | |
701 case AFC_INIT_MIN: | |
702 psi_quant = l1_config.params.afc_dac_min; | |
703 break; | |
704 default : | |
705 break; | |
706 } | |
707 | |
708 /* F0.32 * F13.3 = F5.35 */ | |
709 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); | |
710 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
711 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); | |
712 | |
713 break; | |
714 | |
715 case AFC_OPEN_LOOP : | |
716 { | |
717 /* VCXO changes for spurious FB detection */ | |
718 if (l1s.spurious_fb_detected == TRUE) | |
719 { | |
720 psi_quant = old_psi_quant; | |
721 | |
722 for(i=0;i<C_N_del+1;i++) | |
723 psi_past[i] = old_psi_past[i]; | |
724 | |
725 /* reset the spurious_fb_detected_flag */ | |
726 l1s.spurious_fb_detected = FALSE; | |
727 } /* end of spuriousFB detected */ | |
728 | |
729 /* save in memory the old AFC related values */ | |
730 old_psi_quant = psi_quant; | |
731 | |
732 for(i=0;i<C_N_del+1;i++) | |
733 old_psi_past[i] = psi_past[i]; | |
734 | |
735 /* delay line for psi_quant values */ | |
736 for (i = 1; i <= C_N_del; i++) | |
737 psi_past[i-1] = psi_past[i]; | |
738 | |
739 /* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
740 var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4; | |
741 | |
742 #if(RF_FAM == 61) | |
743 /* In order to implement the NINT function for a F16.0,*/ | |
744 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
745 var_16 = (WORD16) | |
746 ((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18))); | |
747 var_16 = var_16 * 4; | |
748 #else | |
749 /* In order to implement the NINT function for a F16.0,*/ | |
750 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
751 var_16 = (WORD16) | |
752 ((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19))); | |
753 var_16 = var_16 * 8; | |
754 #endif | |
755 if (var_16 > C_max_step) | |
756 psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step); | |
757 else if (var_16 < C_min_step) | |
758 psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step); | |
759 else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */ | |
760 /* F0.32 * F13.3 = F5.35 */ | |
761 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); | |
762 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
763 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); | |
764 | |
765 } | |
766 break; | |
767 | |
768 case AFC_CLOSED_LOOP : | |
769 | |
770 /* delay line for psi_quant values */ | |
771 for (i = 1; i <= C_N_del; i++) | |
772 psi_past[i-1] = psi_past[i]; | |
773 | |
774 /************************************/ | |
775 /* Estimation */ | |
776 /************************************/ | |
777 if ( (l1_config.params.rgap_algo != 0) && | |
778 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
779 #if L1_GPRS | |
780 || l1_mode==PACKET_TRANSFER_MODE | |
781 #endif | |
782 )) | |
783 { | |
784 | |
785 M_Count += *frame_count; | |
786 if (snr >= l1_config.params.afc_snr_thr) { | |
787 // Accumulate average over N TDMA frames | |
788 psi_avg[0] += psi_past[C_N_del]; | |
789 // Count number of good snr's within window_avg_size chunks | |
790 good_snr++; | |
791 } | |
792 // M_Count >= M ? | |
793 if (M_Count >= l1_config.params.afc_win_avg_size_M) { | |
794 // M_Count counts how far we have reached in the window_avg_size blocks | |
795 | |
796 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements | |
797 if (good_snr > 0) | |
798 psi_avg[0] /= good_snr; | |
799 | |
800 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] | |
801 if (first_avg == 1) { | |
802 first_avg = 0; | |
803 // Use first estimation as best guess for the other avg values | |
804 // This is used both at initialisation and when returning from reception gap | |
805 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) | |
806 psi_avg[i] = psi_avg[0]; | |
807 } | |
808 | |
809 // Estimation 1st order | |
810 // Use biggest window to reduce noise effects signal in psi values | |
811 // NOTE: Due to performance issues division by MSIZE is in predictor | |
812 if (l1_config.params.rgap_algo >= 1) { | |
813 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); | |
814 } | |
815 | |
816 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) | |
817 psi_avg[i+1] = psi_avg[i]; | |
818 psi_avg[0] = 0; | |
819 M_Count = 0; | |
820 good_snr = 0; | |
821 } | |
822 | |
823 } else { | |
824 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! | |
825 first_avg = 1; | |
826 M_Count = 0; | |
827 good_snr = 0; | |
828 psi_avg[0] = 0; | |
829 } | |
830 | |
831 if (snr >= l1_config.params.afc_snr_thr) { | |
832 /********************/ | |
833 /* Filter algorithm */ | |
834 /********************/ | |
835 | |
836 /* No prediction during normal operation */ | |
837 B_Count= 0; | |
838 | |
839 /* Clip error angle */ | |
840 if (angle > C_thr_phi) | |
841 angle = C_thr_phi; | |
842 if (angle < -C_thr_phi) | |
843 angle = -C_thr_phi; | |
844 | |
845 Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */ | |
846 /* Phi = angle - Phi_32*/ | |
847 Phi_32 = ((WORD32) angle << 4) - Phi_32; | |
848 /* F1.15 * 4 = F13.19 */ | |
849 Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */ | |
850 /* (F0.20 * F1.15) >> 16 = F13.19 */ | |
851 var_32 = (L * Phi + (1<<15)) >> 16; | |
852 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32); | |
853 | |
854 | |
855 } | |
856 else | |
857 { | |
858 /************************************/ | |
859 /* Prediction */ | |
860 /************************************/ | |
861 | |
862 // Only predict in dedicated mode | |
863 // NO prediction in idle mode | |
864 // l1a_l1s_com.dedic_set.SignalCode = NULL | |
865 if ( (l1_config.params.rgap_algo != 0) && | |
866 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
867 #if L1_GPRS | |
868 || l1_mode==PACKET_TRANSFER_MODE | |
869 #endif | |
870 )) | |
871 { | |
872 /* Prediction of psi during reception gaps */ | |
873 B_Count | |
874 += *frame_count; | |
875 | |
876 /* Predict psi ONLY when we have sufficient measurements available */ | |
877 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ | |
878 | |
879 // Was the consecutive bad SNRs threshold value exceeded? | |
880 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { | |
881 | |
882 // Predict with 0th order estimation is the default | |
883 | |
884 // Predict with 1st order estimation | |
885 if (l1_config.params.rgap_algo >= 1) | |
886 { | |
887 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del], | |
888 ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)) | |
889 ); | |
890 } | |
891 | |
892 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; | |
893 | |
894 // Indicate by raising first_avg flag that a reception gap has occurred | |
895 // I.e. the psi_avg table must be reinitialised after leaving reception gap | |
896 first_avg = 1; | |
897 | |
898 // Counters in estimation part must also be reset | |
899 M_Count = 0; | |
900 good_snr = 0; | |
901 psi_avg[0] = 0; | |
902 } | |
903 } | |
904 } | |
905 | |
906 /* Quantize psi value */ | |
907 | |
908 /* F0.19 * 16.0 = F16.19 */ | |
909 var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv); | |
910 | |
911 #if(RF_FAM == 61) | |
912 /* In order to implement the NINT function for a F13.3,*/ | |
913 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
914 var_16 = (WORD16) | |
915 ((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18)); | |
916 var_16 = var_16 * 4; | |
917 #else | |
918 /* In order to implement the NINT function for a F13.3,*/ | |
919 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
920 var_16 = (WORD16) | |
921 ((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19)); | |
922 var_16 = var_16 * 8; | |
923 #endif | |
924 if (var_16 > C_max_step) | |
925 psi_quant = C_max_step; | |
926 else if (var_16 < C_min_step) | |
927 psi_quant = C_min_step; | |
928 else | |
929 psi_quant = var_16; /* F13.3 */ | |
930 break; | |
931 } // switch phase | |
932 | |
933 *frame_count = 0; | |
934 | |
935 //Locosto | |
936 // return (psi_quant >> 3); /* F16.0 */ | |
937 return(CONVERT_PSI_QUANT(psi_quant)); /* F16.0 to 14.2 or 13.3 */ | |
938 } /* end case algo 2 */ | |
939 | |
940 /* algo1 + init + estimator/predictor */ | |
941 case ALGO_AFC_KALMAN_PREDICTOR: | |
942 { | |
943 if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN)) | |
944 { | |
945 // WARNING | |
946 // In this case, "angle" variable contains EEPROM_AFC initialization value | |
947 // directly loaded from EEPROM, and "snr" variable is not meaningful. | |
948 /* Static variables initialisation */ | |
949 | |
950 quant_avg = 0; | |
951 M_Count = 0; | |
952 for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550 | |
953 psi_avg[i] = 0; | |
954 first_avg = 1; | |
955 good_snr = 0; | |
956 | |
957 // DAC search algorithm is as follows - up to 12 attempts are made | |
958 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> | |
959 // The first four attempts are made on DAC_center | |
960 // The next four attempts are made on DAC_max | |
961 // The last four attempts are made on DAC_min | |
962 // There are statistical reasons for trying four times | |
963 | |
964 switch (phase) { | |
965 case AFC_INIT_CENTER: | |
966 Psi_quant[C_N_del] = l1_config.params.afc_dac_center; | |
967 break; | |
968 case AFC_INIT_MAX: | |
969 Psi_quant[C_N_del] = l1_config.params.afc_dac_max; | |
970 break; | |
971 case AFC_INIT_MIN: | |
972 Psi_quant[C_N_del] = l1_config.params.afc_dac_min; | |
973 break; | |
974 default : | |
975 break; | |
976 } | |
977 | |
978 P=C_cov_start; | |
979 Psi=0; | |
980 if (angle>C_max_step) | |
981 Psi_quant[C_N_del]=C_max_step; | |
982 else | |
983 if(angle<C_min_step) | |
984 Psi_quant[C_N_del]=C_min_step; | |
985 else Psi_quant[C_N_del]=angle; | |
986 | |
987 /* F0.32 * F13.3 = F5.35 */ | |
988 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); | |
989 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
990 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); | |
991 | |
992 } /* end AFC_INIT*/ | |
993 else | |
994 { | |
995 if (phase==AFC_OPEN_LOOP) | |
996 { | |
997 /* relaod last good values in the ALGO */ | |
998 if (l1s.spurious_fb_detected == TRUE) | |
999 { | |
1000 for(i=0;i<C_N_del+1;i++) | |
1001 Psi_quant[i] = old_Psi_quant[i]; | |
1002 | |
1003 Psi = old_Psi; | |
1004 l1s.spurious_fb_detected = FALSE; | |
1005 } | |
1006 | |
1007 /* Save the old values in memory */ | |
1008 for(i=0;i<C_N_del+1;i++) | |
1009 old_Psi_quant[i] = Psi_quant[i]; | |
1010 old_Psi = Psi; | |
1011 | |
1012 /* delay line for Psi_quant values */ | |
1013 for (i=1;i<=C_N_del;i++) | |
1014 Psi_quant[i-1]=Psi_quant[i]; | |
1015 | |
1016 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; | |
1017 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
1018 | |
1019 #if(RF_FAM == 61) | |
1020 /* In order to implement the NINT function for a F16.0, we check */ | |
1021 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
1022 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
1023 var_16=quotient*4; | |
1024 #else | |
1025 /* In order to implement the NINT function for a F16.0, we check */ | |
1026 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
1027 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
1028 var_16=quotient*8; | |
1029 #endif | |
1030 if (var_16>C_max_step) | |
1031 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); | |
1032 else | |
1033 if(var_16<C_min_step) | |
1034 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); | |
1035 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ | |
1036 | |
1037 | |
1038 | |
1039 /* F0.32 * F13.3 = F5.35 */ | |
1040 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); | |
1041 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
1042 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); | |
1043 | |
1044 }/*end if AFC_OPEN_LOOP*/ | |
1045 else | |
1046 { | |
1047 | |
1048 /* delay line for Psi_quant values */ | |
1049 for (i=1;i<=C_N_del;i++) | |
1050 Psi_quant[i-1]=Psi_quant[i]; | |
1051 | |
1052 /************************************/ | |
1053 /* Estimation */ | |
1054 /************************************/ | |
1055 if ( (l1_config.params.rgap_algo != 0) && | |
1056 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1057 #if L1_GPRS | |
1058 || l1_mode==PACKET_TRANSFER_MODE | |
1059 #endif | |
1060 )) | |
1061 { | |
1062 | |
1063 M_Count += *frame_count; | |
1064 if (snr >= l1_config.params.afc_snr_thr) { | |
1065 // Accumulate average over N TDMA frames | |
1066 psi_avg[0] += psi_past[C_N_del]; | |
1067 // Count number of good snr's within window_avg_size chunks | |
1068 good_snr++; | |
1069 } | |
1070 | |
1071 // M_Count >= M ? | |
1072 if (M_Count >= l1_config.params.afc_win_avg_size_M) { | |
1073 // M_Count counts how far we have reached in the window_avg_size blocks | |
1074 | |
1075 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements | |
1076 if (good_snr > 0) | |
1077 psi_avg[0] /= good_snr; | |
1078 | |
1079 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] | |
1080 if (first_avg == 1) { | |
1081 first_avg = 0; | |
1082 // Use first estimation as best guess for the other avg values | |
1083 // This is used both at initialisation and when returning from reception gap | |
1084 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) | |
1085 psi_avg[i] = psi_avg[0]; | |
1086 } | |
1087 | |
1088 // Estimation 1st order | |
1089 // Use biggest window to reduce noise effects signal in psi values | |
1090 // NOTE: Due to performance issues division by MSIZE is in predictor | |
1091 if (l1_config.params.rgap_algo >= 1) { | |
1092 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); | |
1093 } | |
1094 | |
1095 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) | |
1096 psi_avg[i+1] = psi_avg[i]; | |
1097 psi_avg[0] = 0; | |
1098 M_Count = 0; | |
1099 good_snr = 0; | |
1100 } | |
1101 | |
1102 } else { | |
1103 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! | |
1104 first_avg = 1; | |
1105 M_Count = 0; | |
1106 good_snr = 0; | |
1107 psi_avg[0] = 0; | |
1108 } | |
1109 | |
1110 /********************/ | |
1111 /* Filter algorithm */ | |
1112 /********************/ | |
1113 | |
1114 /* Covariance error is increased of C_Q */ | |
1115 P=P+(*frame_count)*C_Q; | |
1116 | |
1117 /* Clipping of P */ | |
1118 if (P>C_thr_P) P=C_thr_P; | |
1119 | |
1120 if (snr>=C_thr_snr) | |
1121 { | |
1122 /* Clipping of error angle */ | |
1123 if (angle>C_thr_phi) | |
1124 angle=C_thr_phi; | |
1125 if (angle<-C_thr_phi) | |
1126 angle=-C_thr_phi; | |
1127 | |
1128 /* Kalman gain */ | |
1129 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ | |
1130 /*C_a0_kalman=0.01 */ | |
1131 /*C_g_kalman =0.05 */ | |
1132 num=(C_g_kalman/snr)+P+C_a0_kalman; | |
1133 /* (F2.30 / F6.10) = F 12.20 */ | |
1134 | |
1135 /* denom = P << 19 = F 1.39 */ | |
1136 /* extension of denom=P to a 40 bits variable */ | |
1137 /* denom (F12.20) << 16 = F 4.36 */ | |
1138 guard1=(WORD16)((WORD32)P>>16); | |
1139 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ | |
1140 denomH=(UWORD16)P; | |
1141 /* Low part of denom is equal to 0, because P has been 16 */ | |
1142 /* bits left shifted previously. */ | |
1143 denomH_3msb=(denomH>>13)&0x0007; | |
1144 guard1=(guard1<<3)|denomH_3msb; | |
1145 denomH<<=3; | |
1146 denom=denomH<<16; //(UWORD32) removed typecast omaps00090550 | |
1147 /* num + guard1 are a 40 bits representation of P */ | |
1148 /* In order to compute P(F1.39)/num, we sample P in guard1 */ | |
1149 /* (scaled to a 32 bits number) and num (32 bits number) */ | |
1150 /* K = ((guard1<<24)/num)<<8 + (denom/num) */ | |
1151 var1=(WORD32)guard1<<24; | |
1152 var1=var1/num; | |
1153 var1=(WORD32)var1<<8; | |
1154 /* var2 is an unsigned variable, var1 contains signed guard*/ | |
1155 /* bits. */ | |
1156 var2= ((WORD32)(denom)/(num)); //omaps00090550 | |
1157 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ | |
1158 /* F13.19 << 1 = F12.20 */ | |
1159 | |
1160 /* Clipping of the Kalman gain */ | |
1161 if (K>=C_thr_K) | |
1162 K=C_thr_K; | |
1163 | |
1164 /*******************************************************/ | |
1165 /* P=(1-K)*P = 0.8 * 0.5 at maximum */ | |
1166 /*******************************************************/ | |
1167 /* Perform a positive variable F12.20 multiplication by*/ | |
1168 /* positive variable F12.20 */ | |
1169 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ | |
1170 guard1=0; /* positive variable */ | |
1171 var1=UMult_40b(P,var_16,&guard1); | |
1172 var_16=(WORD16)((1048576L-K)>>16); | |
1173 /* acchigh(1-K) = F12.20 */ | |
1174 var2=P*var_16; /* var2 = 0x80000 * 0xc */ | |
1175 /* at maximum, so result */ | |
1176 /* is 32 bits WORD32 and */ | |
1177 /* equal 0x600000 */ | |
1178 /* extension of var2 to a 40 bits variable : var2<<16 */ | |
1179 guard2=(WORD16)((WORD32)var2>>16); | |
1180 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); | |
1181 var2=var2<<16; | |
1182 var_32=Add_40b(guard1guard2,var1,var2,&guardout); | |
1183 /* var_32 (F8.40) >> 16 = F8.24 */ | |
1184 LGuard=(WORD32)guardout<<16; | |
1185 var1=(UWORD32)var_32>>16; | |
1186 /* var_32 >> 4 = F12.20 */ | |
1187 P=(var1+LGuard)>>4; | |
1188 | |
1189 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); | |
1190 /* F0.32 * F13.3 = F5.35 */ | |
1191 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ | |
1192 /* F13.19 */ | |
1193 var1=(UWORD32)Phi_32>>16; | |
1194 Phi_32=Psi-(LGuard+var1); /* F13.19 */ | |
1195 | |
1196 /*Phi=angle-Phi_32*/ | |
1197 Phi_32=((WORD32)angle<<4)-Phi_32; | |
1198 /* F1.15 * 4 = F13.19 */ | |
1199 Phi=(WORD16)(Phi_32>>4); /* F17.15 */ | |
1200 /*var1=K*Phi F12.20 * F1.15 = 13.35 */ | |
1201 guard1=0; | |
1202 var1=Mult_40b(K,Phi,&guard1); | |
1203 /* var1 (F13.35) >> 16 */ | |
1204 /* F13.19 */ | |
1205 LGuard=(WORD32)guard1<<16; | |
1206 var1=(UWORD32)var1>>16; | |
1207 Psi+=var1+LGuard; | |
1208 } else { | |
1209 /************************************/ | |
1210 /* Prediction */ | |
1211 /************************************/ | |
1212 | |
1213 // Only predict in dedicated mode | |
1214 // NO prediction in idle mode | |
1215 // l1a_l1s_com.dedic_set.SignalCode = NULL | |
1216 if ( (l1_config.params.rgap_algo != 0) && | |
1217 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1218 #if L1_GPRS | |
1219 || l1_mode==PACKET_TRANSFER_MODE | |
1220 #endif | |
1221 )) | |
1222 { | |
1223 | |
1224 /* Prediction of psi during reception gaps */ | |
1225 B_Count+= *frame_count; | |
1226 | |
1227 /* Predict psi ONLY when we have sufficient measurements available */ | |
1228 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ | |
1229 | |
1230 // Was the consecutive bad SNRs threshold value exceeded? | |
1231 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { | |
1232 | |
1233 // Predict with 0th order estimation is the default | |
1234 | |
1235 // Predict with 1st order estimation | |
1236 if (l1_config.params.rgap_algo >= 1) | |
1237 Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); | |
1238 | |
1239 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; | |
1240 | |
1241 // Indicate by raising first_avg flag that a reception gap has occurred | |
1242 // I.e. the psi_avg table must be reinitialised after leaving reception gap | |
1243 first_avg = 1; | |
1244 | |
1245 // Counters in estimation part must also be reset | |
1246 M_Count = 0; | |
1247 good_snr = 0; | |
1248 psi_avg[0] = 0; | |
1249 } | |
1250 } | |
1251 } | |
1252 | |
1253 /* Quantize psi value */ | |
1254 | |
1255 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); | |
1256 /* F13.19 * C = F13.19 */ | |
1257 | |
1258 #if(RF_FAM == 61) | |
1259 /* In order to implement the NINT function for a F13.3, we check */ | |
1260 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
1261 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
1262 var_16=quotient*4; | |
1263 #else | |
1264 /* In order to implement the NINT function for a F13.3, we check */ | |
1265 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
1266 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
1267 var_16=quotient*8; | |
1268 #endif | |
1269 if (var_16>C_max_step) | |
1270 Psi_quant[C_N_del]=C_max_step; | |
1271 else | |
1272 if(var_16<C_min_step) | |
1273 Psi_quant[C_N_del]=C_min_step; | |
1274 else Psi_quant[C_N_del]=var_16; /* F13.3 */ | |
1275 | |
1276 | |
1277 }/*end AFC_CLOSE_LOOP*/ | |
1278 } /* end else AFC_INIT*/ | |
1279 | |
1280 *frame_count = 0; | |
1281 //Locosto | |
1282 // return(Psi_quant[C_N_del]>>3); /* F16.0 */ | |
1283 return(((CONVERT_PSI_QUANT(Psi_quant[C_N_del]))&0x3FFF)); /* F16.0 to 14.2 or 13.3 */ | |
1284 } /* end case algo 3 */ | |
1285 #endif | |
1286 | |
1287 #if (VCXO_ALGO == 1) | |
1288 default: | |
1289 return 0; | |
1290 //omaps00090550 break; | |
1291 } // end of Switch | |
1292 #endif | |
1293 | |
1294 } /* end l1ctl_afc */ | |
1295 | |
1296 | |
1297 /************************************/ | |
1298 /* Automatic timing control (TOA) */ | |
1299 /************************************/ | |
1300 | |
1301 #if (TOA_ALGO == 2) | |
1302 | |
1303 #define TOA_DEBUG_ENABLE 0 | |
1304 | |
1305 | |
1306 #if (TOA_DEBUG_ENABLE == 1) | |
1307 | |
1308 #define TOA_MAKE_ZERO 0 | |
1309 | |
1310 #define TOA_LOG_BUFFER_LENGTH 4096 | |
1311 | |
1312 typedef struct | |
1313 { | |
1314 UWORD16 SNR_val; | |
1315 UWORD16 TOA_val; | |
1316 UWORD16 l1_mode; | |
1317 UWORD16 toa_frames_counter; | |
1318 UWORD16 fn_mod42432; | |
1319 }T_TOA_log_debug; | |
1320 | |
1321 | |
1322 T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH]; | |
1323 UWORD32 toa_log_index; | |
1324 | |
1325 UWORD32 toa_make_zero_f; | |
1326 | |
1327 #endif | |
1328 | |
1329 /*-------------------------------------------------------*/ | |
1330 /* l1ctl_toa() */ | |
1331 /*-------------------------------------------------------*/ | |
1332 /* Parameters : */ | |
1333 /* Return : */ | |
1334 /* Functionality : */ | |
1335 /*-------------------------------------------------------*/ | |
1336 | |
1337 WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val) | |
1338 { | |
1339 WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode]; | |
1340 WORD16 TOA_SHIFT=ISH_INVALID; | |
1341 UWORD16 cumul_abs; | |
1342 WORD16 cumul_sign; | |
1343 WORD32 prod_tmp, div_tmp,prod_sign; | |
1344 WORD32 toa_update_flag=0; | |
1345 WORD16 cumul; | |
1346 UWORD16 cumul_counter; | |
1347 #if (NEW_TOA_ALGO == 1) | |
1348 UWORD16 Trans_active; | |
1349 static WORD16 cumul_noTrans =0; | |
1350 static UWORD16 period_counter_noTrans =0; | |
1351 | |
1352 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1353 #if L1_GPRS | |
1354 || l1_mode==PACKET_TRANSFER_MODE | |
1355 #endif | |
1356 ) | |
1357 Trans_active=TRUE; | |
1358 else Trans_active=FALSE; | |
1359 #endif | |
1360 if (phase==TOA_INIT) | |
1361 { | |
1362 #if (NEW_TOA_ALGO == 1) | |
1363 cumul_noTrans =0; | |
1364 period_counter_noTrans =0; | |
1365 #endif | |
1366 | |
1367 l1s.toa_var.toa_frames_counter=0; | |
1368 l1s.toa_var.toa_accumul_counter=0; | |
1369 l1s.toa_var.toa_accumul_value=0; | |
1370 #if (TOA_DEBUG_ENABLE == 1) | |
1371 toa_log_index = 0; | |
1372 #if (TOA_MAKE_ZERO == 1) | |
1373 toa_make_zero_f = 1; | |
1374 #else | |
1375 toa_make_zero_f = 0; | |
1376 #endif | |
1377 #endif | |
1378 | |
1379 return (TOA_SHIFT); | |
1380 } | |
1381 | |
1382 cumul = l1s.toa_var.toa_accumul_value; | |
1383 cumul_counter = l1s.toa_var.toa_accumul_counter; | |
1384 | |
1385 #if (TOA_DEBUG_ENABLE == 1) | |
1386 toa_log_debug[toa_log_index].SNR_val = SNR_val; | |
1387 toa_log_debug[toa_log_index].TOA_val = TOA_val; | |
1388 toa_log_debug[toa_log_index].l1_mode = l1_mode; | |
1389 toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter; | |
1390 toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432; | |
1391 | |
1392 toa_log_index++; | |
1393 if(toa_log_index == TOA_LOG_BUFFER_LENGTH) | |
1394 { | |
1395 toa_log_index = 0; | |
1396 } | |
1397 #endif /* #if (TOA_DEBUG_ENABLE == 1) */ | |
1398 | |
1399 #if (TRACE_TYPE == 5) | |
1400 trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter, | |
1401 l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value); | |
1402 #endif | |
1403 | |
1404 l1s.toa_var.toa_frames_counter++; | |
1405 | |
1406 { | |
1407 /* Fix for TOA */ | |
1408 #define DSP_CALC_NO_TABS_HO 0x3CA4 | |
1409 | |
1410 UWORD16 *toa_ho_fix; | |
1411 toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO); | |
1412 | |
1413 if ((TOA_val >= 22) || (TOA_val <= 6)) { | |
1414 *toa_ho_fix = 1; | |
1415 } | |
1416 | |
1417 if (*toa_ho_fix == 1) { | |
1418 if((TOA_val <= 18) && (TOA_val >= 10)) { | |
1419 *toa_ho_fix = 0; | |
1420 } | |
1421 } else { | |
1422 *toa_ho_fix = 0; | |
1423 } | |
1424 } | |
1425 | |
1426 | |
1427 #if (NEW_TOA_ALGO == 1) | |
1428 if (Trans_active) | |
1429 { | |
1430 #endif | |
1431 if (SNR_val>= L1_TOA_SNR_THRESHOLD) | |
1432 { | |
1433 cumul_counter++; | |
1434 | |
1435 prod_tmp = L1_TOA_LAMBDA * cumul; | |
1436 prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding | |
1437 div_tmp = ((prod_tmp >> 15) & (0x0000FFFF)); | |
1438 cumul = div_tmp; | |
1439 | |
1440 // implemented below is | |
1441 // cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA)) | |
1442 if(TOA_val > L1_TOA_EXPECTED_TOA) { | |
1443 cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA; | |
1444 } | |
1445 else if (TOA_val < L1_TOA_EXPECTED_TOA) { | |
1446 cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA; | |
1447 } | |
1448 } // End if SNR_val | |
1449 | |
1450 if(l1s.toa_var.toa_update_flag == TRUE) | |
1451 { | |
1452 toa_update_flag = 1; | |
1453 } | |
1454 | |
1455 if (toa_update_flag) | |
1456 { | |
1457 cumul_sign = (cumul>0)? 1: -1; | |
1458 cumul_abs = cumul_sign*cumul; | |
1459 if(cumul_counter <= 5) | |
1460 { | |
1461 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign; | |
1462 } | |
1463 else if(cumul_counter == 6) | |
1464 { | |
1465 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign; | |
1466 } | |
1467 else if(cumul_counter == 7) | |
1468 { | |
1469 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign; | |
1470 } | |
1471 else if(cumul_counter >= 8) | |
1472 { | |
1473 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign; | |
1474 } | |
1475 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1476 trace_info.toa_trace_var.toa_accumul_value = cumul; | |
1477 trace_info.toa_trace_var.toa_accumul_counter = cumul_counter; | |
1478 trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter; | |
1479 #endif | |
1480 | |
1481 cumul = 0; | |
1482 cumul_counter = 0; | |
1483 l1s.toa_var.toa_frames_counter = 0; | |
1484 l1s.toa_var.toa_update_flag = FALSE; | |
1485 | |
1486 #if (TOA_DEBUG_ENABLE == 1) | |
1487 #if (TOA_MAKE_ZERO == 1) | |
1488 if (toa_make_zero_f == 1) | |
1489 { | |
1490 TOA_SHIFT=0; | |
1491 } | |
1492 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ | |
1493 #endif /*#if (TOA_MAKE_ZERO == 1)*/ | |
1494 | |
1495 } // end of if toa_update_flag | |
1496 #if (NEW_TOA_ALGO == 1) | |
1497 | |
1498 } | |
1499 | |
1500 else | |
1501 { | |
1502 period_counter_noTrans++; | |
1503 | |
1504 if (SNR_val>= L1_TOA_SNR_THRESHOLD) | |
1505 { | |
1506 cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA; | |
1507 | |
1508 } // End if SNR_val | |
1509 | |
1510 if (l1s.toa_var.toa_update_flag == TRUE) | |
1511 { | |
1512 switch (period_counter_noTrans) | |
1513 { | |
1514 case 2: | |
1515 if (cumul_noTrans>=0) | |
1516 TOA_SHIFT = (cumul_noTrans+1) >>1 ; | |
1517 else | |
1518 TOA_SHIFT = (cumul_noTrans) >>1 ; | |
1519 break; | |
1520 case 3: /* Not fully accurate rounding*/ | |
1521 if (cumul_noTrans>=0) | |
1522 TOA_SHIFT = (cumul_noTrans+2)/3 ; | |
1523 else | |
1524 TOA_SHIFT = (cumul_noTrans-2)/3 ; | |
1525 break; | |
1526 case 4: | |
1527 if (cumul_noTrans>=0) | |
1528 TOA_SHIFT = (cumul_noTrans+2) >>2 ; | |
1529 else | |
1530 TOA_SHIFT = (cumul_noTrans+1) >>2 ; | |
1531 break; | |
1532 default: | |
1533 TOA_SHIFT = cumul_noTrans; | |
1534 break; | |
1535 } /* end switch*/ | |
1536 | |
1537 if (TOA_SHIFT>8) | |
1538 TOA_SHIFT =8; | |
1539 if (TOA_SHIFT<-8) | |
1540 TOA_SHIFT =-8; | |
1541 | |
1542 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1543 trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans; | |
1544 trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans; | |
1545 trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans; | |
1546 #endif | |
1547 | |
1548 cumul_noTrans = 0; | |
1549 period_counter_noTrans = 0; | |
1550 l1s.toa_var.toa_update_flag = FALSE; | |
1551 #if (TOA_DEBUG_ENABLE == 1) | |
1552 #if (TOA_MAKE_ZERO == 1) | |
1553 if (toa_make_zero_f == 1) | |
1554 { | |
1555 TOA_SHIFT=0; | |
1556 } | |
1557 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ | |
1558 #endif /*#if (TOA_MAKE_ZERO == 1)*/ | |
1559 | |
1560 } // end if update_flag | |
1561 } | |
1562 #endif | |
1563 // error a TOA is waiting to be updated in the TPU and will be erased | |
1564 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1565 if (l1s.toa_var.toa_shift != ISH_INVALID) | |
1566 { | |
1567 l1_trace_toa_not_updated (); // should not occur!! | |
1568 } | |
1569 #endif | |
1570 | |
1571 if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames | |
1572 { | |
1573 // Set mask counter to 2 (2 frames masked). | |
1574 l1s.toa_var.toa_snr_mask = 2; | |
1575 } | |
1576 | |
1577 l1s.toa_var.toa_accumul_value = cumul; | |
1578 l1s.toa_var.toa_accumul_counter = cumul_counter; | |
1579 | |
1580 return(TOA_SHIFT); | |
1581 | |
1582 } // l1ctl_toa | |
1583 | |
1584 | |
1585 #else | |
1586 /*-------------------------------------------------------*/ | |
1587 /* l1ctl_toa_update() */ | |
1588 /*-------------------------------------------------------*/ | |
1589 /* Parameters : */ | |
1590 /* Return : */ | |
1591 /* Functionality : */ | |
1592 /*-------------------------------------------------------*/ | |
1593 WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode) | |
1594 { | |
1595 static UWORD16 Old_TOA_estimated=12; //unit is Qbit | |
1596 UWORD32 TOAMAX; | |
1597 WORD16 IZW,ISH,i; | |
1598 UWORD32 TOA_estimated=0; //unit is Qbit | |
1599 UWORD16 Trans_active; | |
1600 | |
1601 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1602 #if L1_GPRS | |
1603 || l1_mode==PACKET_TRANSFER_MODE | |
1604 #endif | |
1605 ) | |
1606 Trans_active=TRUE; | |
1607 else Trans_active=FALSE; | |
1608 | |
1609 /* TOA offset computation and clock adjustement */ | |
1610 TOAMAX=0; | |
1611 for (i=1;i<TOA_HISTO_LEN;i++) | |
1612 { | |
1613 if (TOASP[i]>TOAMAX) | |
1614 TOAMAX=TOASP[i]; | |
1615 } | |
1616 TOAMAX >>= C_RED; | |
1617 i=1;IZW=0; | |
1618 while (i<TOA_HISTO_LEN && IZW==0) | |
1619 { | |
1620 if (TOASP[i]>=TOAMAX) | |
1621 IZW=i; | |
1622 i++; | |
1623 } | |
1624 | |
1625 /* Estimated TOA calculation */ | |
1626 if (TOASP[IZW-1]<(2*TOAMAX/3)) | |
1627 { | |
1628 TOA_estimated=IZW; | |
1629 TOA_estimated *= 4; // unit in QBit | |
1630 } | |
1631 else | |
1632 { | |
1633 UWORD32 TOA_divisor = 0; | |
1634 TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW); | |
1635 TOA_estimated *= 8; //F13.3 in order to have qBit precision | |
1636 TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); | |
1637 if (TOA_divisor!=0) | |
1638 { | |
1639 TOA_estimated/= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); | |
1640 TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2") | |
1641 } | |
1642 else | |
1643 { | |
1644 TOA_estimated = 0; | |
1645 } | |
1646 } | |
1647 | |
1648 if (Trans_active) | |
1649 TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2; | |
1650 | |
1651 /* Offset calculation*/ | |
1652 if (TOA_estimated>=17 || TOA_estimated<=15) | |
1653 ISH=TOA_estimated - 16; | |
1654 else | |
1655 ISH=0; | |
1656 | |
1657 if (Trans_active) | |
1658 { | |
1659 if (ISH>1) ISH=1; | |
1660 if (ISH<-1) ISH=-1; | |
1661 } | |
1662 else | |
1663 { | |
1664 if (ISH>8) ISH=8; | |
1665 if (ISH<-8) ISH=-8; | |
1666 } | |
1667 | |
1668 Old_TOA_estimated = TOA_estimated - ISH - 4; | |
1669 | |
1670 | |
1671 return (ISH); | |
1672 } | |
1673 | |
1674 /*-------------------------------------------------------*/ | |
1675 /* l1ctl_toa() */ | |
1676 /*-------------------------------------------------------*/ | |
1677 /* Parameters : */ | |
1678 /* Return : */ | |
1679 /* Functionality : generate an histogram of TOA weighted */ | |
1680 /* with SNR */ | |
1681 /*-------------------------------------------------------*/ | |
1682 WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count | |
1683 #if (FF_L1_FAST_DECODING == 1) | |
1684 , UWORD8 skipped_values | |
1685 #endif | |
1686 ) | |
1687 { | |
1688 // xSignalHeaderRec *msg; | |
1689 UWORD16 i; | |
1690 WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode]; | |
1691 static UWORD32 histo[TOA_HISTO_LEN]; | |
1692 static WORD16 period_counter=0; | |
1693 UWORD32 SNR_ZW; | |
1694 WORD16 ISH=ISH_INVALID; | |
1695 | |
1696 UWORD8 histo_center; | |
1697 | |
1698 #if 0 | |
1699 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)) | |
1700 histo_center=4; | |
1701 else | |
1702 histo_center=5; | |
1703 #else | |
1704 histo_center=4; | |
1705 #endif | |
1706 | |
1707 | |
1708 if (phase==TOA_INIT) | |
1709 { | |
1710 period_counter=0; | |
1711 | |
1712 for (i=0;i<TOA_HISTO_LEN;i++) | |
1713 histo[i]=0; | |
1714 histo[histo_center]=128; //F6.10 | |
1715 | |
1716 return(ISH); | |
1717 } | |
1718 #if (FF_L1_FAST_DECODING == 1) | |
1719 /* Manage any missing bursts due to fast decoding */ | |
1720 period_counter += skipped_values; | |
1721 #endif | |
1722 | |
1723 period_counter++; | |
1724 /* Filter update */ | |
1725 if (SNR_val>=C_SNRGR) | |
1726 { | |
1727 if (SNR_val>C_SNR_THR) | |
1728 SNR_ZW=C_SNR_THR; | |
1729 else | |
1730 SNR_ZW=SNR_val; | |
1731 histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */ | |
1732 /* if TOA=1 histo[2]++ */ | |
1733 /* ... */ | |
1734 /* if TOA=9 histo[10]++ */ | |
1735 /* histo[0] is reserved for computation */ | |
1736 } | |
1737 | |
1738 #if L1_GPRS | |
1739 if (l1_mode==PACKET_TRANSFER_MODE) | |
1740 { | |
1741 if (*toa_update) | |
1742 { | |
1743 // Get ISH. | |
1744 ISH = l1ctl_toa_update(histo, l1_mode); | |
1745 | |
1746 //reset TOA period length counter | |
1747 period_counter=0; | |
1748 | |
1749 //reset histogram | |
1750 for (i=0;i<TOA_HISTO_LEN;i++) | |
1751 histo[i]=0; | |
1752 histo[histo_center]=128; //F6.10 | |
1753 | |
1754 *toa_update = FALSE; // reset TOA update flag | |
1755 *toa_period_count = 0; // reset TOA period counter | |
1756 } | |
1757 } | |
1758 else | |
1759 #endif | |
1760 if (period_counter>=TOA_period_len) | |
1761 // It is time to compute a new ISH and to reset the histogram. | |
1762 // Rem: ">=" is very important since a "l1 mode" change can give | |
1763 // a "TOA_period_len" smaller than the previous one an | |
1764 // therefore a "period_counter" may be already higher than | |
1765 // the new "TOA_period_len". | |
1766 { | |
1767 // Get ISH. | |
1768 ISH = l1ctl_toa_update(histo, l1_mode); | |
1769 | |
1770 //reset TOA period length counter | |
1771 period_counter=0; | |
1772 | |
1773 //reset histogram | |
1774 for (i=0;i<TOA_HISTO_LEN;i++) | |
1775 histo[i]=0; | |
1776 histo[histo_center]=128; //F6.10 | |
1777 } | |
1778 | |
1779 // error a TOA is waiting to be updated in the TPU and will be erased | |
1780 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1781 if (l1s.toa_shift != ISH_INVALID) | |
1782 { | |
1783 l1_trace_toa_not_updated(); // should not occur !! | |
1784 } | |
1785 #endif | |
1786 | |
1787 if (ISH != ISH_INVALID) // new TOA => set the mask frames | |
1788 { | |
1789 // Set mask counter to 2 (2 frames masked). | |
1790 l1s.toa_snr_mask = 2; | |
1791 } | |
1792 | |
1793 return(ISH); | |
1794 } | |
1795 #endif | |
1796 | |
1797 /*-------------------------------------------------------*/ | |
1798 /* l1ctl_txpwr() */ | |
1799 /*-------------------------------------------------------*/ | |
1800 /* Parameters : */ | |
1801 /* Return : */ | |
1802 /* Functionality : */ | |
1803 /*-------------------------------------------------------*/ | |
1804 UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr) | |
1805 { | |
1806 if(target_txpwr > current_txpwr) | |
1807 { | |
1808 current_txpwr ++; // Increase TX power by 2 dB. | |
1809 } | |
1810 else | |
1811 if(target_txpwr < current_txpwr) | |
1812 { | |
1813 current_txpwr --; // Decrease TX power by 2 dB. | |
1814 } | |
1815 | |
1816 return(current_txpwr); | |
1817 } | |
1818 | |
1819 | |
1820 /************************************/ | |
1821 /* Automatic Gain Control */ | |
1822 /************************************/ | |
1823 /*-------------------------------------------------------*/ | |
1824 /* l1ctl_encode_delta1() */ | |
1825 /*-------------------------------------------------------*/ | |
1826 /* Parameters : */ | |
1827 /* Return : */ | |
1828 /* Functionality : */ | |
1829 /*-------------------------------------------------------*/ | |
1830 #if(L1_FF_MULTIBAND == 0) | |
1831 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) | |
1832 { | |
1833 switch(l1_config.std.id) | |
1834 { | |
1835 case GSM: | |
1836 case GSM_E: | |
1837 case DCS1800: | |
1838 case PCS1900: | |
1839 case GSM850: | |
1840 return(l1_config.std.cal_freq1_band1); | |
1841 case DUAL: | |
1842 case DUALEXT: | |
1843 case DUAL_US: | |
1844 if(radio_freq >= l1_config.std.first_radio_freq_band2) | |
1845 return(l1_config.std.cal_freq1_band2); | |
1846 else | |
1847 return(l1_config.std.cal_freq1_band1); | |
1848 } | |
1849 return 0;//omaps00090550 | |
1850 | |
1851 } | |
1852 #endif | |
1853 /*-------------------------------------------------------*/ | |
1854 /* l1ctl_encode_lna() */ | |
1855 /*-------------------------------------------------------*/ | |
1856 /* Parameters : */ | |
1857 /* Return : */ | |
1858 /* Functionality : */ | |
1859 /*-------------------------------------------------------*/ | |
1860 #if (L1_FF_MULTIBAND == 0) | |
1861 void l1ctl_encode_lna( UWORD8 input_level, | |
1862 UWORD8 *lna_state, | |
1863 UWORD16 radio_freq) | |
1864 { | |
1865 | |
1866 /*** LNA Hysteresis is implemented as following : | |
1867 | |
1868 | | |
1869 On|---<>----+-------+ | |
1870 | | | | |
1871 LNA | | | | |
1872 | ^ v | |
1873 | | | | |
1874 | | | | |
1875 Off| +-------+----<>----- | |
1876 +-------------------------------- | |
1877 50 40 30 20 input_level /-dBm | |
1878 THR_HIGH THR_LOW ***/ | |
1879 | |
1880 | |
1881 | |
1882 | |
1883 | |
1884 if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) && | |
1885 (radio_freq >= l1_config.std.first_radio_freq_band2)) | |
1886 { | |
1887 if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ? | |
1888 { | |
1889 *lna_state = LNA_ON; // lna_off = FALSE | |
1890 } | |
1891 else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ? | |
1892 { | |
1893 *lna_state = LNA_OFF; // lna off = TRUE | |
1894 } | |
1895 } | |
1896 else | |
1897 { | |
1898 if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ? | |
1899 { | |
1900 *lna_state = LNA_ON; // lna_off = FALSE | |
1901 } | |
1902 else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ? | |
1903 { | |
1904 *lna_state = LNA_OFF; // lna off = TRUE | |
1905 } | |
1906 } | |
1907 | |
1908 } | |
1909 | |
1910 #endif | |
1911 | |
1912 /*-------------------------------------------------------*/ | |
1913 /* l1ctl_csgc() */ | |
1914 /*-------------------------------------------------------*/ | |
1915 /* Description: */ | |
1916 /* ============ */ | |
1917 /* If we are running the first pass of a measurement */ | |
1918 /* session, we use the HIGH_AGC default agc setting to */ | |
1919 /* compute the input level from the measured power from */ | |
1920 /* the DSP. If this input level is saturated we set a */ | |
1921 /* saturation flag, otherwise we validate the measure and*/ | |
1922 /* store, for the considered carrier, the input level. */ | |
1923 /* When all the carriers have been scanned and some have */ | |
1924 /* been flagged "saturated", we measure them with the */ | |
1925 /* LOW_AGC agc setting, then store, for the considered */ | |
1926 /* carrier, the input level. */ | |
1927 /*-------------------------------------------------------*/ | |
1928 UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq) | |
1929 { | |
1930 WORD16 current_IL, current_calibrated_IL =0; //omaps00090550 | |
1931 WORD8 delta1_freq, delta2_freq; | |
1932 WORD16 delta_drp_gain=0; | |
1933 UWORD32 index; | |
1934 UWORD16 g_magic; | |
1935 UWORD16 arfcn; | |
1936 UWORD16 dco_algo_ctl_pw_temp = 0; | |
1937 UWORD8 if_ctl = 0; | |
1938 #if (CODE_VERSION != SIMULATION) | |
1939 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
1940 #endif | |
1941 | |
1942 #if (L1_FF_MULTIBAND == 0) | |
1943 | |
1944 // initialize index | |
1945 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
1946 | |
1947 #else | |
1948 | |
1949 index = | |
1950 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
1951 | |
1952 #endif /*if(L1_FF_MULTIBAND == 0)*/ | |
1953 | |
1954 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
1955 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
1956 | |
1957 g_magic = l1ctl_get_g_magic(radio_freq); | |
1958 #if (L1_FF_MULTIBAND == 0) | |
1959 arfcn = Convert_l1_radio_freq(radio_freq); | |
1960 #endif | |
1961 | |
1962 if (l1a_l1s_com.full_list.meas_1st_pass_read) | |
1963 { | |
1964 // We validate or not power measure (pm) for the considered carrier | |
1965 // with measurement achieved with HIGH_AGC setting. We are working | |
1966 // with non calibrated IL to avoid saturation | |
1967 #if(RF_FAM == 61) | |
1968 #if (CODE_VERSION != SIMULATION) | |
1969 | |
1970 #if (PWMEAS_IF_MODE_FORCE == 0) | |
1971 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , | |
1972 0, | |
1973 radio_freq,if_threshold); | |
1974 #else | |
1975 if_ctl = IF_120KHZ_DSP; | |
1976 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
1977 #endif | |
1978 | |
1979 #if (L1_FF_MULTIBAND == 0) | |
1980 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
1981 #else | |
1982 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
1983 #endif // MULTIBAND == 0 else | |
1984 | |
1985 if(if_ctl == IF_100KHZ_DSP){ | |
1986 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
1987 } | |
1988 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
1989 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
1990 } | |
1991 | |
1992 #endif | |
1993 #endif | |
1994 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
1995 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); | |
1996 else | |
1997 { | |
1998 #if TESTMODE | |
1999 if (!l1_config.agc_enable) | |
2000 current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic)); | |
2001 else | |
2002 #endif | |
2003 current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic)); | |
2004 // for array index purpose, we work with positive IL | |
2005 | |
2006 } | |
2007 | |
2008 // NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for | |
2009 // ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0 | |
2010 | |
2011 if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL | |
2012 // for IL_2_AGC_xx index purpose. | |
2013 #if TESTMODE | |
2014 && (l1_config.agc_enable) | |
2015 #endif | |
2016 ) | |
2017 { | |
2018 // pm is saturated so measure is not valid | |
2019 l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++; | |
2020 l1a_l1s_com.full_list.nbr_sat_carrier_read++; | |
2021 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1; | |
2022 } | |
2023 else | |
2024 { | |
2025 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2026 | |
2027 #if TESTMODE | |
2028 // When running with fixed AGC setting saturated carriers may occur: | |
2029 // protect against negative IL; | |
2030 if ((!l1_config.agc_enable) && (current_calibrated_IL < 0)) | |
2031 { | |
2032 current_calibrated_IL=0; | |
2033 current_IL=0; | |
2034 } | |
2035 #endif | |
2036 | |
2037 // Protect IL stores against overflow | |
2038 if (current_calibrated_IL>INDEX_MAX) | |
2039 current_calibrated_IL=INDEX_MAX; | |
2040 if (current_IL>INDEX_MAX) | |
2041 current_IL=INDEX_MAX; | |
2042 | |
2043 // we validate the measure and save input_level and lna_off fields. | |
2044 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2045 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2046 radio_freq); | |
2047 | |
2048 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL; | |
2049 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; | |
2050 } | |
2051 } | |
2052 else // 2nd pass if any. | |
2053 { | |
2054 // we validate the measure and save input_level and lna_off(always 0) | |
2055 // fields. | |
2056 #if(RF_FAM == 61) | |
2057 #if (CODE_VERSION != SIMULATION) | |
2058 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID, | |
2059 0,radio_freq,if_threshold); | |
2060 #if (L1_FF_MULTIBAND == 0) | |
2061 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2062 #else | |
2063 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2064 #endif | |
2065 if(if_ctl == IF_100KHZ_DSP){ | |
2066 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2067 } | |
2068 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2069 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2070 } | |
2071 #endif | |
2072 #endif | |
2073 | |
2074 | |
2075 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2076 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); | |
2077 else | |
2078 current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic)); | |
2079 | |
2080 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2081 | |
2082 // Protect IL stores against overflow | |
2083 if (current_calibrated_IL>INDEX_MAX) | |
2084 current_calibrated_IL=INDEX_MAX; | |
2085 if (current_IL>INDEX_MAX) | |
2086 current_IL=INDEX_MAX; | |
2087 | |
2088 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2089 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2090 radio_freq); | |
2091 | |
2092 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL; | |
2093 | |
2094 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; | |
2095 } | |
2096 | |
2097 return((UWORD8)current_calibrated_IL); | |
2098 } | |
2099 | |
2100 /*-------------------------------------------------------*/ | |
2101 /* l1ctl_pgc() */ | |
2102 /*-------------------------------------------------------*/ | |
2103 /* Description : For a given radio_freq, last_known_agc is */ | |
2104 /* ============ based on a prior knowledge (the last */ | |
2105 /* stored input_level for the considered */ | |
2106 /* carrier). From the power measurement on */ | |
2107 /* this carrier (pm), we update the */ | |
2108 /* input_level for this carrier, for the */ | |
2109 /* next task to control. */ | |
2110 /*-------------------------------------------------------*/ | |
2111 UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il, | |
2112 UWORD8 lna_off, UWORD16 radio_freq) | |
2113 { | |
2114 WORD32 last_known_agc; | |
2115 WORD32 current_IL, current_calibrated_IL; | |
2116 WORD8 delta1_freq, delta2_freq; | |
2117 WORD16 delta_drp_gain=0; | |
2118 WORD32 index, lna_value; | |
2119 UWORD16 arfcn; | |
2120 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2121 UWORD8 if_ctl = 0; | |
2122 #if (CODE_VERSION != SIMULATION) | |
2123 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2124 #endif | |
2125 | |
2126 #if (L1_FF_MULTIBAND == 0) | |
2127 | |
2128 // initialize index | |
2129 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
2130 | |
2131 #else | |
2132 | |
2133 index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
2134 | |
2135 #endif // #if (L1_FF_MULTIBAND == 0) else | |
2136 | |
2137 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2138 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2139 | |
2140 lna_value = lna_off * l1ctl_get_lna_att(radio_freq); | |
2141 | |
2142 last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID, lna_off)) << 1; | |
2143 // F7.1 in order to be compatible with | |
2144 // pm and IL formats [-20,+140 in F7.1] | |
2145 // contain the input_level value we use | |
2146 // in the associated CTL task to build | |
2147 // the agc used in this CTL. | |
2148 #if (L1_FF_MULTIBAND == 0) | |
2149 arfcn = Convert_l1_radio_freq(radio_freq); | |
2150 #else | |
2151 arfcn=radio_freq; | |
2152 #endif | |
2153 | |
2154 #if(RF_FAM == 61) | |
2155 #if (CODE_VERSION != SIMULATION) | |
2156 | |
2157 #if (PWMEAS_IF_MODE_FORCE == 0) | |
2158 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2159 last_known_il, | |
2160 radio_freq,if_threshold); | |
2161 #else | |
2162 if_ctl = IF_120KHZ_DSP; | |
2163 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
2164 #endif | |
2165 | |
2166 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2167 if(if_ctl == IF_100KHZ_DSP){ | |
2168 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2169 } | |
2170 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2171 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2172 } | |
2173 | |
2174 #endif | |
2175 #endif | |
2176 | |
2177 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2178 current_IL = l1a_l1s_com.last_input_level[index].input_level ; | |
2179 else | |
2180 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2181 | |
2182 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2183 | |
2184 // Protect IL stores against overflow | |
2185 if (current_calibrated_IL>INDEX_MAX) | |
2186 current_calibrated_IL=INDEX_MAX; | |
2187 if (current_IL>INDEX_MAX) | |
2188 current_IL=INDEX_MAX; | |
2189 | |
2190 // we validate the measure and save input_level and lna_off fields | |
2191 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2192 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2193 radio_freq); | |
2194 | |
2195 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL; | |
2196 | |
2197 return((UWORD8)current_calibrated_IL); | |
2198 } | |
2199 | |
2200 | |
2201 /*-------------------------------------------------------*/ | |
2202 /* l1ctl_pgc2() */ | |
2203 /*-------------------------------------------------------*/ | |
2204 /* Description : */ | |
2205 /* ============= */ | |
2206 /* from power measurement pm_high_agc, */ | |
2207 /* achieve with an HIGH_AGC setting, and pm_low_agc */ | |
2208 /* achieve with a LOW_AGC seeting, we deduce the new */ | |
2209 /* AGC to apply in the next CTL task. */ | |
2210 /*-------------------------------------------------------*/ | |
2211 void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq) | |
2212 { | |
2213 UWORD8 pm; | |
2214 WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL; | |
2215 WORD8 delta1_freq, delta2_freq; | |
2216 WORD16 delta_high_drp_gain=0; | |
2217 WORD16 delta_low_drp_gain=0; | |
2218 WORD32 index; | |
2219 UWORD16 g_magic; | |
2220 UWORD16 arfcn; | |
2221 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2222 UWORD8 if_ctl = 0; | |
2223 #if (CODE_VERSION != SIMULATION) | |
2224 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2225 #endif | |
2226 | |
2227 #if (L1_FF_MULTIBAND == 0) | |
2228 | |
2229 // initialize index | |
2230 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
2231 | |
2232 #else | |
2233 | |
2234 index = | |
2235 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
2236 | |
2237 #endif // #if (L1_FF_MULTIBAND == 0) else | |
2238 | |
2239 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2240 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2241 | |
2242 g_magic = l1ctl_get_g_magic(radio_freq); | |
2243 | |
2244 // lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following | |
2245 // formula. | |
2246 | |
2247 #if (L1_FF_MULTIBAND == 0) | |
2248 arfcn = Convert_l1_radio_freq(radio_freq); | |
2249 #else | |
2250 arfcn=radio_freq; | |
2251 #endif | |
2252 | |
2253 if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL | |
2254 new_IL = l1a_l1s_com.last_input_level[index].input_level; | |
2255 else | |
2256 { | |
2257 | |
2258 #if(RF_FAM == 61) | |
2259 #if (CODE_VERSION != SIMULATION) | |
2260 | |
2261 #if (PWMEAS_IF_MODE_FORCE == 0) | |
2262 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , | |
2263 0, | |
2264 radio_freq,if_threshold); | |
2265 #else | |
2266 if_ctl = IF_120KHZ_DSP; | |
2267 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
2268 #endif | |
2269 | |
2270 | |
2271 delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
2272 delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2273 if(if_ctl == IF_100KHZ_DSP){ | |
2274 delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2275 delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2276 } | |
2277 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2278 delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2279 delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2280 } | |
2281 #endif | |
2282 #endif | |
2283 | |
2284 IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic); | |
2285 IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic); | |
2286 | |
2287 // HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with | |
2288 // pm and IL formats | |
2289 | |
2290 if (IL_low_agc>=l1_config.params.low_agc_noise_thr) | |
2291 // pm_low_agc was on the noise floor, so not valid | |
2292 { | |
2293 // whatever the value of pm_high_agc, we consider it | |
2294 // as the right setting | |
2295 new_IL = IL_high_agc; | |
2296 pm = pm_high_agc; | |
2297 } | |
2298 else | |
2299 { | |
2300 // pm_low_agc is valid. | |
2301 if (IL_high_agc<=l1_config.params.high_agc_sat_thr) | |
2302 { | |
2303 // pm_high_agc is not valid, it's saturated. | |
2304 new_IL = IL_low_agc; | |
2305 pm = pm_low_agc; | |
2306 } | |
2307 else | |
2308 { | |
2309 // both pm_low_agc and pm_high_agc are valid, so we test the one that | |
2310 // gives the maximum input level and consider it as the right setting. | |
2311 if (IL_high_agc<=IL_low_agc) | |
2312 { | |
2313 new_IL = IL_high_agc; | |
2314 pm = pm_high_agc; | |
2315 } | |
2316 else | |
2317 { | |
2318 new_IL = IL_low_agc; | |
2319 pm = pm_low_agc; | |
2320 } | |
2321 } | |
2322 } | |
2323 } | |
2324 | |
2325 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
2326 RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) | |
2327 RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) | |
2328 #endif | |
2329 | |
2330 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2331 | |
2332 // Protect IL stores against overflow | |
2333 if (current_calibrated_IL>INDEX_MAX) | |
2334 current_calibrated_IL=INDEX_MAX; | |
2335 if (new_IL>INDEX_MAX) | |
2336 new_IL=INDEX_MAX; | |
2337 | |
2338 // Updating of input_level and lna_off fields in order to correctly | |
2339 // setting the AGC for the next task. | |
2340 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2341 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2342 radio_freq); | |
2343 | |
2344 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL; | |
2345 } | |
2346 | |
2347 | |
2348 /*-------------------------------------------------------*/ | |
2349 /* l1ctl_find_max() */ | |
2350 /*-------------------------------------------------------*/ | |
2351 /* Parameters : */ | |
2352 /* Return : */ | |
2353 /* Functionality : */ | |
2354 /*-------------------------------------------------------*/ | |
2355 UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len) | |
2356 { | |
2357 | |
2358 // WARNING: for array index purpose we work with POSITIVE input level | |
2359 // so maximum search for negative numbers is equivalent to | |
2360 // minimum search for positive numbers!!!!!! | |
2361 // (-30 > -120 but 30 < 120) | |
2362 | |
2363 UWORD8 maximum = 240; | |
2364 UWORD8 i; | |
2365 | |
2366 for (i=0; i<buffer_len; i++) | |
2367 { | |
2368 if (buff[i]<maximum) | |
2369 maximum=buff[i]; | |
2370 } | |
2371 | |
2372 return(maximum); | |
2373 } | |
2374 | |
2375 /*-------------------------------------------------------*/ | |
2376 /* l1ctl_pagc() */ | |
2377 /*-------------------------------------------------------*/ | |
2378 /* Description : */ | |
2379 /* =========== */ | |
2380 /* We deduce the last_known_agc from the last stored */ | |
2381 /* input_level for the considered carrier. We use this */ | |
2382 /* agc value to "build" the input level linked to the pm */ | |
2383 /* we have just read. */ | |
2384 /* This input level is used to feed a fifo of 4 elements */ | |
2385 /* and then compute an input_level maximum. This value is*/ | |
2386 /* used to update the input_level for this carrier. This */ | |
2387 /* input_level will be used for the next task to control.*/ | |
2388 /*-------------------------------------------------------*/ | |
2389 UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2390 { | |
2391 WORD8 delta1_freq, delta2_freq; | |
2392 WORD16 delta_drp_gain=0; | |
2393 WORD32 last_known_agc; | |
2394 UWORD8 IL_max; | |
2395 WORD32 current_IL, current_calibrated_IL; | |
2396 UWORD8 i; | |
2397 WORD32 lna_value; | |
2398 UWORD16 arfcn; | |
2399 UWORD8 lna_off; | |
2400 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2401 UWORD8 if_ctl = 0; | |
2402 #if (CODE_VERSION != SIMULATION) | |
2403 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2404 #endif | |
2405 | |
2406 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2407 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2408 | |
2409 // Update fifo | |
2410 for (i=3;i>0;i--) | |
2411 l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1]; | |
2412 | |
2413 // from the lna state (ON/OFF) we compute the attenuation | |
2414 // that was applied to signal when performing the power | |
2415 // measure. | |
2416 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2417 | |
2418 // Compute applied agc for this pm | |
2419 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off )) << 1; | |
2420 // F7.1 in order to be compatible | |
2421 // with pm and IL formats | |
2422 // contain the input_level value we use | |
2423 // in the associated CTL task to build | |
2424 // the agc used in this CTL. | |
2425 | |
2426 #if (L1_FF_MULTIBAND == 0) | |
2427 arfcn = Convert_l1_radio_freq(radio_freq); | |
2428 #else | |
2429 arfcn=radio_freq; | |
2430 #endif | |
2431 | |
2432 #if(RF_FAM == 61) | |
2433 #if (CODE_VERSION != SIMULATION) | |
2434 | |
2435 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2436 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2437 radio_freq,if_threshold); | |
2438 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2439 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2440 if(if_ctl == IF_100KHZ_DSP){ | |
2441 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2442 } | |
2443 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2444 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2445 } | |
2446 | |
2447 #endif | |
2448 #endif | |
2449 | |
2450 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2451 current_IL = IL_info_ptr->input_level; | |
2452 else | |
2453 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2454 | |
2455 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2456 | |
2457 // Protect IL stores against overflow | |
2458 if (current_calibrated_IL>INDEX_MAX) | |
2459 current_calibrated_IL=INDEX_MAX; | |
2460 if (current_IL>INDEX_MAX) | |
2461 current_IL=INDEX_MAX; | |
2462 | |
2463 l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL; | |
2464 | |
2465 IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4); | |
2466 | |
2467 //input levels are always stored with lna_on | |
2468 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2469 &(IL_info_ptr->lna_off), | |
2470 radio_freq ); | |
2471 | |
2472 IL_info_ptr->input_level = IL_max; | |
2473 | |
2474 #if L2_L3_SIMUL | |
2475 #if (DEBUG_TRACE==BUFFER_TRACE_PAGC) | |
2476 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2477 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID, l1a_l1s_com.Scell_used_IL_dd.lna_off)); | |
2478 #endif | |
2479 #endif | |
2480 | |
2481 return((UWORD8)current_calibrated_IL); | |
2482 } | |
2483 | |
2484 /*-------------------------------------------------------*/ | |
2485 /* l1ctl_dpagc() */ | |
2486 /*-------------------------------------------------------*/ | |
2487 /* Description : */ | |
2488 /* =========== */ | |
2489 /* Based on the same principle as the one used for PAGC */ | |
2490 /* algorithm except that we feed 3 different fifo: */ | |
2491 /* 1) one is dedicated to BCCH carrier */ | |
2492 /* 2) another one is dedicated to all the other type of */ | |
2493 /* bursts */ | |
2494 /* 3) the last one is dedicated to non DTX influenced */ | |
2495 /* bursts */ | |
2496 /*-------------------------------------------------------*/ | |
2497 UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2498 { | |
2499 UWORD8 av_G_all, av_G_DTX; | |
2500 UWORD8 max_G_all, max_G_DTX; | |
2501 WORD32 last_known_agc, new_IL, current_calibrated_IL; | |
2502 WORD8 delta1_freq, delta2_freq; | |
2503 WORD16 delta_drp_gain=0; | |
2504 UWORD8 i; | |
2505 UWORD8 *tab_ptr; | |
2506 T_DEDIC_SET *aset; | |
2507 WORD32 lna_value; | |
2508 UWORD16 arfcn; | |
2509 UWORD8 lna_off; | |
2510 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2511 UWORD8 if_ctl = 0; | |
2512 #if (CODE_VERSION != SIMULATION) | |
2513 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2514 #endif | |
2515 | |
2516 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2517 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2518 | |
2519 aset = l1a_l1s_com.dedic_set.aset; | |
2520 | |
2521 if (beacon) | |
2522 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; | |
2523 else | |
2524 tab_ptr = aset->G_all; | |
2525 | |
2526 // Update fifo | |
2527 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2528 tab_ptr[i]=tab_ptr[i-1]; | |
2529 | |
2530 #if TESTMODE | |
2531 if (!l1_config.agc_enable) | |
2532 { | |
2533 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) | |
2534 // corresponds to the lna_off bit | |
2535 last_known_agc = (l1_config.tmode.rx_params.agc) << 1; | |
2536 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); | |
2537 } | |
2538 else | |
2539 #endif | |
2540 { | |
2541 #if DPAGC_MAX_FLAG | |
2542 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)) << 1; | |
2543 // F7.1 in order to be compatible with pm and IL formats | |
2544 #else | |
2545 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)) << 1; | |
2546 // F7.1 in order to be compatible with pm and IL formats | |
2547 #endif | |
2548 // input_level_dd : contain the input_level value we use | |
2549 // in the associated CTL task to build the agc used in this CTL. | |
2550 | |
2551 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2552 } | |
2553 | |
2554 #if (L1_FF_MULTIBAND == 0) | |
2555 arfcn = Convert_l1_radio_freq(radio_freq); | |
2556 #else | |
2557 arfcn=radio_freq; | |
2558 #endif | |
2559 | |
2560 #if(RF_FAM == 61) | |
2561 #if (CODE_VERSION != SIMULATION) | |
2562 | |
2563 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2564 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2565 radio_freq,if_threshold); | |
2566 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2567 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2568 if(if_ctl == IF_100KHZ_DSP){ | |
2569 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2570 } | |
2571 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2572 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2573 } | |
2574 | |
2575 #endif | |
2576 #endif | |
2577 | |
2578 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2579 new_IL = IL_info_ptr->input_level; | |
2580 else | |
2581 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2582 | |
2583 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2584 | |
2585 // Protect IL stores against overflow | |
2586 if (current_calibrated_IL>INDEX_MAX) | |
2587 current_calibrated_IL=INDEX_MAX; | |
2588 | |
2589 #if TESTMODE | |
2590 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 | |
2591 { | |
2592 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) | |
2593 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) | |
2594 { | |
2595 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; | |
2596 } | |
2597 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 | |
2598 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 | |
2599 } | |
2600 #endif | |
2601 | |
2602 if (new_IL>INDEX_MAX) | |
2603 new_IL=INDEX_MAX; | |
2604 | |
2605 tab_ptr[0] = (UWORD8)new_IL; | |
2606 | |
2607 if (dtx_on && !beacon) | |
2608 { | |
2609 // Update DTX fifo | |
2610 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2611 aset->G_DTX[i]=aset->G_DTX[i-1]; | |
2612 | |
2613 aset->G_DTX[0]=tab_ptr[0]; | |
2614 } | |
2615 | |
2616 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ | |
2617 #if DPAGC_MAX_FLAG | |
2618 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); | |
2619 | |
2620 if (!beacon) | |
2621 { | |
2622 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); | |
2623 | |
2624 // WARNING: for array index purpose we work with POSITIVE input level | |
2625 // so maximum search for negative numbers is equivalent to | |
2626 // minimum search for positive numbers!!!!!! | |
2627 // (-30 > -120 but 30 < 120) | |
2628 if (max_G_all <= max_G_DTX) | |
2629 new_IL = max_G_all; | |
2630 else | |
2631 new_IL = max_G_DTX; | |
2632 } | |
2633 else | |
2634 new_IL = max_G_all; | |
2635 #else | |
2636 av_G_all=av_G_DTX=0; | |
2637 | |
2638 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2639 av_G_all += tab_ptr[i]; | |
2640 | |
2641 av_G_all /= DPAGC_FIFO_LEN; | |
2642 | |
2643 if (!beacon) | |
2644 { | |
2645 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2646 av_G_DTX += aset->G_DTX[i]; | |
2647 | |
2648 av_G_DTX /= DPAGC_FIFO_LEN; | |
2649 | |
2650 if (av_G_all >= av_G_DTX) | |
2651 new_IL = av_G_all; | |
2652 else | |
2653 new_IL = av_G_DTX; | |
2654 } | |
2655 else | |
2656 new_IL = av_G_all; | |
2657 #endif | |
2658 | |
2659 // Updating of input_level and lna_off fields in order to correctly | |
2660 // setting the AGC for the next task. | |
2661 // input_level is always store with lna_on | |
2662 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2663 &(IL_info_ptr->lna_off), | |
2664 radio_freq ); | |
2665 | |
2666 IL_info_ptr->input_level = (UWORD8)new_IL ; | |
2667 | |
2668 #if L2_L3_SIMUL | |
2669 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) | |
2670 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2671 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)); | |
2672 #endif | |
2673 #endif | |
2674 | |
2675 return((UWORD8)current_calibrated_IL); | |
2676 } | |
2677 | |
2678 #if (AMR == 1) | |
2679 /*-------------------------------------------------------*/ | |
2680 /* l1ctl_dpagc_amr() */ | |
2681 /*-------------------------------------------------------*/ | |
2682 /* Description : */ | |
2683 /* =========== */ | |
2684 /* Based on the same principle as the one used for DPAGC */ | |
2685 /* algorithm except that the way to feed the G_dtx is */ | |
2686 /* different */ | |
2687 /*-------------------------------------------------------*/ | |
2688 UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2689 { | |
2690 UWORD8 av_G_all, av_G_DTX; | |
2691 UWORD8 max_G_all, max_G_DTX, max_il; | |
2692 WORD32 last_known_agc, new_IL, current_calibrated_IL; | |
2693 WORD8 delta1_freq, delta2_freq; | |
2694 WORD16 delta_drp_gain=0; | |
2695 UWORD8 i; | |
2696 UWORD8 *tab_ptr, *tab_amr_ptr; | |
2697 T_DEDIC_SET *aset; | |
2698 WORD32 lna_value; | |
2699 UWORD16 arfcn; | |
2700 UWORD8 lna_off; | |
2701 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2702 UWORD8 if_ctl = 0; | |
2703 #if (CODE_VERSION != SIMULATION) | |
2704 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2705 #endif | |
2706 | |
2707 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2708 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2709 | |
2710 aset = l1a_l1s_com.dedic_set.aset; | |
2711 | |
2712 if (beacon) | |
2713 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; | |
2714 else | |
2715 tab_ptr = aset->G_all; | |
2716 | |
2717 // Update fifo | |
2718 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2719 tab_ptr[i]=tab_ptr[i-1]; | |
2720 | |
2721 tab_amr_ptr = aset->G_amr; | |
2722 for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--) | |
2723 tab_amr_ptr[i]=tab_amr_ptr[i-1]; | |
2724 | |
2725 #if TESTMODE | |
2726 if (!l1_config.agc_enable) | |
2727 { | |
2728 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) | |
2729 // corresponds to the lna_off bit | |
2730 last_known_agc = (l1_config.tmode.rx_params.agc) << 1; | |
2731 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); | |
2732 } | |
2733 else | |
2734 #endif | |
2735 { | |
2736 #if DPAGC_MAX_FLAG | |
2737 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)) << 1; | |
2738 // F7.1 in order to be compatible with pm and IL formats | |
2739 #else | |
2740 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)) << 1; | |
2741 // F7.1 in order to be compatible with pm and IL formats | |
2742 #endif | |
2743 // input_level_dd : contain the input_level value we use | |
2744 // in the associated CTL task to build the agc used in this CTL. | |
2745 | |
2746 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2747 } | |
2748 | |
2749 #if (L1_FF_MULTIBAND == 0) | |
2750 arfcn = Convert_l1_radio_freq(radio_freq); | |
2751 #else | |
2752 arfcn=radio_freq; | |
2753 #endif | |
2754 | |
2755 #if(RF_FAM == 61) | |
2756 #if (CODE_VERSION != SIMULATION) | |
2757 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2758 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2759 radio_freq,if_threshold); | |
2760 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2761 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2762 if(if_ctl == IF_100KHZ_DSP){ | |
2763 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2764 } | |
2765 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2766 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2767 } | |
2768 #endif | |
2769 #endif | |
2770 | |
2771 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2772 new_IL = IL_info_ptr->input_level; | |
2773 else | |
2774 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2775 | |
2776 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2777 | |
2778 // Protect IL stores against overflow | |
2779 if (current_calibrated_IL>INDEX_MAX) | |
2780 current_calibrated_IL=INDEX_MAX; | |
2781 | |
2782 #if TESTMODE | |
2783 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 | |
2784 { | |
2785 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) | |
2786 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) | |
2787 { | |
2788 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; | |
2789 } | |
2790 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 | |
2791 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 | |
2792 } | |
2793 #endif | |
2794 | |
2795 if (new_IL>INDEX_MAX) | |
2796 new_IL=INDEX_MAX; | |
2797 | |
2798 tab_ptr[0] = (UWORD8)new_IL; | |
2799 tab_amr_ptr[0] = (UWORD8)new_IL; | |
2800 | |
2801 if (dtx_on && !beacon) | |
2802 { | |
2803 // a new AMR block is received, feed the G_dtx with the max_il of the block | |
2804 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2805 aset->G_DTX[i]=aset->G_DTX[i-1]; | |
2806 | |
2807 if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE) | |
2808 { | |
2809 // Keep the max_il between the last 2 bursts | |
2810 if (aset->G_amr[0] > aset->G_amr[1]) | |
2811 max_il = aset->G_amr[0]; | |
2812 else | |
2813 max_il = aset->G_amr[1]; | |
2814 } | |
2815 else | |
2816 { | |
2817 // Keep the max_il between the last 4 bursts | |
2818 max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN); | |
2819 } | |
2820 | |
2821 aset->G_DTX[0]= max_il; | |
2822 } | |
2823 | |
2824 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ | |
2825 #if DPAGC_MAX_FLAG | |
2826 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); | |
2827 | |
2828 if (!beacon) | |
2829 { | |
2830 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); | |
2831 | |
2832 // WARNING: for array index purpose we work with POSITIVE input level | |
2833 // so maximum search for negative numbers is equivalent to | |
2834 // minimum search for positive numbers!!!!!! | |
2835 // (-30 > -120 but 30 < 120) | |
2836 if (max_G_all <= max_G_DTX) | |
2837 new_IL = max_G_all; | |
2838 else | |
2839 new_IL = max_G_DTX; | |
2840 } | |
2841 else | |
2842 new_IL = max_G_all; | |
2843 #else | |
2844 av_G_all=av_G_DTX=0; | |
2845 | |
2846 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2847 av_G_all += tab_ptr[i]; | |
2848 | |
2849 av_G_all /= DPAGC_FIFO_LEN; | |
2850 | |
2851 if (!beacon) | |
2852 { | |
2853 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2854 av_G_DTX += aset->G_DTX[i]; | |
2855 | |
2856 av_G_DTX /= DPAGC_FIFO_LEN; | |
2857 | |
2858 if (av_G_all >= av_G_DTX) | |
2859 new_IL = av_G_all; | |
2860 else | |
2861 new_IL = av_G_DTX; | |
2862 } | |
2863 else | |
2864 new_IL = av_G_all; | |
2865 #endif | |
2866 | |
2867 // Updating of input_level and lna_off fields in order to correctly | |
2868 // setting the AGC for the next task. | |
2869 // input_level is always store with lna_on | |
2870 | |
2871 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2872 &(IL_info_ptr->lna_off), | |
2873 radio_freq ); | |
2874 IL_info_ptr->input_level = (UWORD8)new_IL ; | |
2875 | |
2876 #if L2_L3_SIMUL | |
2877 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) | |
2878 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2879 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID,l1a_l1s_com.Scell_used_IL_dd.lna_off)); | |
2880 #endif | |
2881 #endif | |
2882 | |
2883 return((UWORD8)current_calibrated_IL); | |
2884 } | |
2885 #endif // AMR == 1 | |
2886 | |
2887 /*-------------------------------------------------------*/ | |
2888 /* l1ctl_get_g_magic() */ | |
2889 /*-------------------------------------------------------*/ | |
2890 /* Parameters : */ | |
2891 /* Return : */ | |
2892 /* Functionality : */ | |
2893 /*-------------------------------------------------------*/ | |
2894 #if (L1_FF_MULTIBAND == 0) | |
2895 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) | |
2896 { | |
2897 | |
2898 | |
2899 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) | |
2900 { | |
2901 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
2902 return(l1_config.std.g_magic_band2); | |
2903 else | |
2904 return(l1_config.std.g_magic_band1); | |
2905 } | |
2906 else | |
2907 return(l1_config.std.g_magic_band1); | |
2908 | |
2909 | |
2910 } | |
2911 #endif | |
2912 | |
2913 /*-------------------------------------------------------*/ | |
2914 /* l1ctl_get_lna_att() */ | |
2915 /*-------------------------------------------------------*/ | |
2916 /* Parameters : */ | |
2917 /* Return : */ | |
2918 /* Functionality : */ | |
2919 /*-------------------------------------------------------*/ | |
2920 #if (L1_FF_MULTIBAND == 0) | |
2921 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) | |
2922 { | |
2923 | |
2924 | |
2925 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) | |
2926 { | |
2927 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
2928 return(l1_config.std.lna_att_band2); | |
2929 else | |
2930 return(l1_config.std.lna_att_band1); | |
2931 } | |
2932 else | |
2933 return(l1_config.std.lna_att_band1); | |
2934 | |
2935 | |
2936 } | |
2937 #endif | |
2938 /*-------------------------------------------------------*/ | |
2939 /* l1ctl_update_TPU_with_toa() */ | |
2940 /*-------------------------------------------------------*/ | |
2941 /* Parameters : */ | |
2942 /* Return : */ | |
2943 /* Functionality : */ | |
2944 /*-------------------------------------------------------*/ | |
2945 UWORD16 l1ctl_update_TPU_with_toa(void) | |
2946 { | |
2947 #if (TOA_ALGO != 0) | |
2948 WORD16 toa_shift; | |
2949 | |
2950 #if (TOA_ALGO == 2) | |
2951 toa_shift = l1s.toa_var.toa_shift; | |
2952 #else | |
2953 toa_shift = l1s.toa_shift; | |
2954 #endif | |
2955 | |
2956 if (toa_shift != ISH_INVALID) | |
2957 // New ISH (TOA shift) has been stored in "l1s.toa_shift". | |
2958 { | |
2959 // NEW !!! For EOTD measurements in IDLE mode, cut AFC updates... | |
2960 #if (L1_EOTD==1) | |
2961 #if (L1_GPRS) | |
2962 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || | |
2963 (l1a_l1s_com.mode == DEDIC_MODE)|| | |
2964 (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED)) | |
2965 #else | |
2966 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || | |
2967 (l1a_l1s_com.mode == DEDIC_MODE)) | |
2968 #endif | |
2969 { | |
2970 // In dedicated or transfer modes we need to track an TOA | |
2971 // updates to post correct th results, else E-OTD implementation | |
2972 // has qb errors... | |
2973 | |
2974 if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE) | |
2975 && (l1a_l1s_com.nsync.eotd_toa_phase == 1) ) | |
2976 { | |
2977 l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift; | |
2978 } | |
2979 #endif | |
2980 // Update tpu offset. | |
2981 l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE; | |
2982 | |
2983 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
2984 #if (GSM_IDLE_RAM == 0) | |
2985 l1_trace_new_toa(); | |
2986 #else | |
2987 l1_trace_new_toa_intram(); | |
2988 #endif | |
2989 #endif | |
2990 | |
2991 #if (L1_EOTD==1) | |
2992 } | |
2993 #endif | |
2994 | |
2995 #if (TRACE_TYPE == 5) | |
2996 #if (TOA_ALGO == 2) | |
2997 trace_toa_sim_update (toa_shift,l1s.tpu_offset); | |
2998 #endif | |
2999 #endif | |
3000 | |
3001 // Reset ISH. | |
3002 #if (TOA_ALGO == 2) | |
3003 l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH. | |
3004 #else | |
3005 l1s.toa_shift = ISH_INVALID; // Reset the ISH. | |
3006 #endif | |
3007 } | |
3008 #endif | |
3009 return 0; //omaps00090550 | |
3010 } | |
3011 | |
3012 | |
3013 /*-------------------------------------------------------*/ | |
3014 /* l1ctl_saic() */ | |
3015 /*-------------------------------------------------------*/ | |
3016 /* Parameters : */ | |
3017 /* Return : */ | |
3018 /* Functionality : */ | |
3019 /*-------------------------------------------------------*/ | |
3020 | |
3021 #if (L1_SAIC != 0) | |
3022 #define SWH_CHANTAP_INIT 0xFFD068CE | |
3023 #if (NEW_SNR_THRESHOLD == 1) | |
3024 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag) | |
3025 #else | |
3026 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode) | |
3027 #endif /* NEW_SNR_THRESHOLD */ | |
3028 { | |
3029 UWORD16 SWH_flag = 0; | |
3030 UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER; | |
3031 #if (NEW_SNR_THRESHOLD == 0) | |
3032 volatile UWORD16 *ptr; | |
3033 UWORD8 saic_flag; | |
3034 #endif /* NEW_SNR_THRESHOLD */ | |
3035 #if (NEW_SNR_THRESHOLD == 0) | |
3036 ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT); | |
3037 *ptr = 0; | |
3038 saic_flag=1; | |
3039 #else | |
3040 *saic_flag=0; | |
3041 #endif | |
3042 | |
3043 switch (l1_mode) | |
3044 { | |
3045 case DEDIC_MODE: // GSM DEDICATED MODE | |
3046 { | |
3047 #if (NEW_SNR_THRESHOLD == 1) | |
3048 *saic_flag=1; | |
3049 #endif | |
3050 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD) | |
3051 { | |
3052 SWH_flag=1; | |
3053 } | |
3054 | |
3055 break; | |
3056 } | |
3057 #if L1_GPRS | |
3058 case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE | |
3059 { | |
3060 #if (NEW_SNR_THRESHOLD == 0) | |
3061 #if (L1_SAIC == 1) | |
3062 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) | |
3063 { | |
3064 *ptr = 4; | |
3065 } | |
3066 #endif /*#if (L1_SAIC == 3)*/ | |
3067 #endif | |
3068 | |
3069 #if (L1_SAIC == 3) | |
3070 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) | |
3071 { | |
3072 SWH_flag = 1; | |
3073 } | |
3074 #endif /*#if (L1_SAIC == 3)*/ | |
3075 break; | |
3076 } | |
3077 #endif /*#if L1_GPRS*/ | |
3078 default: /* GSM OR GPRS IDLE MODES */ | |
3079 { | |
3080 #if ((L1_SAIC == 2)||(L1_SAIC == 3)) | |
3081 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD) | |
3082 { | |
3083 SWH_flag=1; | |
3084 } | |
3085 #endif | |
3086 break; | |
3087 } | |
3088 } | |
3089 | |
3090 l1ddsp_load_swh_flag (SWH_flag , | |
3091 #if (NEW_SNR_THRESHOLD == 0) | |
3092 saic_flag | |
3093 #else | |
3094 *saic_flag | |
3095 #endif | |
3096 ); | |
3097 | |
3098 if(SWH_flag == 1) | |
3099 { | |
3100 CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER; | |
3101 } | |
3102 | |
3103 | |
3104 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
3105 l1_trace_saic(SWH_flag, | |
3106 #if (NEW_SNR_THRESHOLD == 0) | |
3107 saic_flag | |
3108 #else | |
3109 *saic_flag | |
3110 #endif | |
3111 ); | |
3112 #endif | |
3113 #if (TRACE_TYPE == 5) | |
3114 trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag); | |
3115 #endif | |
3116 | |
3117 return(CSF_Filter_choice); | |
3118 } | |
3119 #endif | |
3120 | |
3121 #if (FF_L1_FAST_DECODING == 1) | |
3122 /*-----------------------------------------------------------------*/ | |
3123 /* l1ctl_pagc_missing_bursts */ | |
3124 /*-----------------------------------------------------------------*/ | |
3125 /* */ | |
3126 /* Description: */ | |
3127 /* ------------ */ | |
3128 /* When fast decoding is active, fewer bursts are decoded. As a */ | |
3129 /* result, fewer gain values are available. The PAGC algo must */ | |
3130 /* be updated with the missed values. */ | |
3131 /* */ | |
3132 /* Input parameters: */ | |
3133 /* ----------------- */ | |
3134 /* UWORD8 skipped_values: the number of skipped bursts due to fast */ | |
3135 /* decoding. */ | |
3136 /* */ | |
3137 /* Input parameters from globals: */ | |
3138 /* ------------------------------ */ | |
3139 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ | |
3140 /* l1_config.params.il_min: minimum level */ | |
3141 /* */ | |
3142 /* Output parameters: */ | |
3143 /* ------------------ */ | |
3144 /* none */ | |
3145 /* */ | |
3146 /* Modified parameters from globals: */ | |
3147 /* --------------------------------- */ | |
3148 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ | |
3149 /* */ | |
3150 /*-----------------------------------------------------------------*/ | |
3151 | |
3152 void l1ctl_pagc_missing_bursts (UWORD8 skipped_values) | |
3153 { | |
3154 UWORD8 i = 0; | |
3155 | |
3156 /* skipped_values cannot be greater than 3, otherwise this is an error | |
3157 * and the PAGC algorithm mustn't be updated. */ | |
3158 if (skipped_values > 3) | |
3159 { | |
3160 return; | |
3161 } | |
3162 | |
3163 /* Update fifo by removing skipped_values of samples */ | |
3164 for (i = 3; i > (skipped_values - 1); i--) | |
3165 { | |
3166 l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values]; | |
3167 } | |
3168 | |
3169 /* Insert minimum IL level as many times a burst has been skipped */ | |
3170 for (i = 0; i < skipped_values; i++) | |
3171 { | |
3172 l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min; | |
3173 } | |
3174 } | |
3175 #endif /* #if (FF_L1_FAST_DECODING == 1) */ | |
3176 | |
3177 | |
3178 |