comparison gsm-fw/L1/cust0/mv100/l1_cust.c_traceversion @ 517:eafadfee35b2

gsm-fw/L1/cust?: imported Leonardo, LoCosto and MV100 versions
author Michael Spacefalcon <msokolov@ivan.Harhan.ORG>
date Thu, 10 Jul 2014 03:43:04 +0000
parents
children
comparison
equal deleted inserted replaced
516:78495749970a 517:eafadfee35b2
1 /************* Revision Controle System Header *************
2 * GSM Layer 1 software
3 * L1_CUST.C
4 *
5 * Filename l1_cust.c
6 * Version 3.66
7 * Date 03/21/03
8 *
9 ************* Revision Controle System Header *************/
10
11 //#define GLOBAL
12
13 #include "string.h"
14
15 #include "l1_confg.h"
16 #include "l1_const.h"
17 #include "ulpd.h"
18 #include "tm_defs.h"
19 #include "l1_types.h"
20 #include "l1_time.h"
21 #include "l1_trace.h"
22 #include "sys_types.h"
23 #include "sim.h"
24 #include "buzzer.h"
25 #include "serialswitch.h"
26
27 #if TESTMODE
28 #include "l1tm_defty.h"
29 #endif
30
31 #if (AUDIO_TASK == 1)
32 #include "l1audio_const.h"
33 #include "l1audio_cust.h"
34 #include "l1audio_defty.h"
35 #endif
36
37 #if (L1_GTT == 1)
38 #include "l1gtt_const.h"
39 #include "l1gtt_defty.h"
40 #endif
41 #include "l1_defty.h"
42 #include "l1_msgty.h"
43 #include "l1_tabs.h"
44 #include "l1_varex.h"
45
46 #if (VCXO_ALGO == 1)
47 #include "l1_ctl.h"
48 #endif
49
50 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
51 #include "spi_drv.h"
52 #endif
53
54 #if (RF==35)
55 #include "tpudrv35.h"
56 #include "l1_rf35.h"
57 #include "l1_rf35.c"
58 #endif
59
60 #if (RF==12)
61 #include "tpudrv12.h"
62 #include "l1_rf12.h"
63 #include "l1_rf12.c"
64 #endif
65
66 #if (RF==10)
67 #include "tpudrv10.h"
68 #include "l1_rf10.h"
69 #include "l1_rf10.c"
70 #endif
71
72 #if (RF==8)
73 #include "tpudrv8.h"
74 #include "l1_rf8.h"
75 #include "l1_rf8.c"
76 #endif
77
78 #if (RF==2)
79 #include "l1_rf2.h"
80 #include "l1_rf2.c"
81 #endif
82
83 // Nucleus functions
84 extern INT TMD_Timer_State;
85 extern UWORD32 TMD_Timer; // for big sleep
86 extern UWORD32 TCD_Priority_Groups;
87 extern VOID *TCD_Current_Thread;
88 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
89 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
90 extern TC_PROTECT TCD_System_Protect;
91
92 #if (L2_L3_SIMUL == 0)
93 #define FFS_WORKAROUND 1
94 #else
95 #define FFS_WORKAROUND 0
96 #endif
97 #if (FFS_WORKAROUND == 1)
98 #include "ffs.h"
99 #else
100 typedef signed int int32;
101 typedef signed char effs_t;
102 typedef int32 filesize_t;
103 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
104 effs_t ffs_fread(const char *name, void *addr, filesize_t size);
105 #endif
106
107 // Import band configuration from Flash module (need to replace by an access function)
108 //extern UWORD8 std;
109 extern T_L1_CONFIG l1_config;
110 extern T_L1S_GLOBAL l1s;
111
112 #if (CODE_VERSION != SIMULATION)
113 // Import serial switch configuration
114 extern char ser_cfg_info[2];
115 #endif
116
117 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
118 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
119 void config_rf_rw_band(char type, UWORD8 read);
120 void config_rf_read(char type);
121 void config_rf_write(char type);
122
123 enum {
124 RF_ID = 0,
125 ADC_ID = 1
126 };
127
128 /*-------------------------------------------------------*/
129 /* Parameters: none */
130 /* Return: none */
131 /* Functionality: Defines the location of rf-struct */
132 /* for each std. */
133 /*-------------------------------------------------------*/
134
135 const static T_BAND_CONFIG band_config[] =
136 { /*ffs name, default addr, max carrier, min tx pwr */
137 {"",(T_RF_BAND *) 0,0,0},//undefined
138 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
139 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
140 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
141 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
142 #if (RF == 10)
143 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
144 #endif
145 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
146 };
147
148 /*-------------------------------------------------------*/
149 /* Parameters: none */
150 /* Return: none */
151 /* Functionality: Defines the indices into band_config */
152 /* for each std. */
153 /*-------------------------------------------------------*/
154 const T_STD_CONFIG std_config[] =
155 {
156 /* band1 index, band2 index, txpwr turning point, first arfcn*/
157 { 0, 0, 0, 0 }, // std = 0 not used
158 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
159 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
160 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
161 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
162 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
163 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
164 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
165 #if (RF == 10)
166 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
167 #else
168 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
169 #endif
170 };
171
172 /*-------------------------------------------------------*/
173 /* Prototypes of external functions used in this file. */
174 /*-------------------------------------------------------*/
175 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
176 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
177
178 /*-------------------------------------------------------*/
179 /* Cust_recover_Os() */
180 /*-------------------------------------------------------*/
181 /* */
182 /* Description: adjust OS from sleep duration */
183 /* ------------ */
184 /* This function fix the : */
185 /* - system clock */
186 /* - Nucleus timers */
187 /* - xxxxxx (customer dependant) */
188 /*-------------------------------------------------------*/
189
190 UWORD8 Cust_recover_Os(void)
191 {
192 #if (CODE_VERSION != SIMULATION)
193 if (l1_config.pwr_mngt == PWR_MNGT)
194 {
195 UWORD32 current_system_clock;
196
197 /***************************************************/
198 // Fix System clock and Nucleus Timers if any.... */
199 /***************************************************/
200 // Fix System clock ....
201 current_system_clock = NU_Retrieve_Clock();
202 current_system_clock += l1s.pw_mgr.sleep_duration;
203 NU_Set_Clock(current_system_clock);
204
205 // Fix Nucleus timer (if needed) ....
206 if (TMD_Timer_State == TM_ACTIVE)
207 {
208 TMD_Timer -= l1s.pw_mgr.sleep_duration;
209 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
210 }
211
212 /***************************************************/
213 // Cust dependant part ... */
214 /***************************************************/
215 //.............
216 //.............
217 //..............
218 return(TRUE);
219
220 }
221 #endif
222 }
223
224
225
226 /*-------------------------------------------------------*/
227 /* Cust_check_system() */
228 /*-------------------------------------------------------*/
229 /* */
230 /* Description: */
231 /* ------------ */
232 /* GSM 1.5 : */
233 /* - authorize UWIRE clock to be stopped */
234 /* and write value in l1s.pw_mgr.modules_status. */
235 /* - authorize ARMIO clock to be stopped if the light is */
236 /* off and write value in l1s.pw_mgr.modules_status. */
237 /* - check if SIM clock have been stopped */
238 /* before allowing DEEP SLEEP. */
239 /* - check if UARTs are ready to enter deep sleep */
240 /* - choose the sleep mode */
241 /* */
242 /* Return: */
243 /* ------- */
244 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
245 /*-------------------------------------------------------*/
246 UWORD8 Cust_check_system(void)
247 {
248 extern UWORD8 why_big_sleep;
249 #if (CODE_VERSION != SIMULATION)
250 if (l1_config.pwr_mngt == PWR_MNGT)
251 {
252
253 #if (L2_L3_SIMUL == 0)
254 // Forbid deep sleep if the light is on
255 if(LT_Status())
256 {
257 //cut ARMIO and UWIRE clocks in big sleep
258 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
259 why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
260 return(FRAME_STOP); // BIG sleep
261 }
262
263 // Forbid deep sleep if the SIM and UARTs not ready
264 if(SIM_SleepStatus())
265 {
266 #endif
267 if(SER_UartSleepStatus())
268 {
269 return(CLOCK_STOP); // DEEP sleep
270 }
271 else why_big_sleep = BIG_SLEEP_DUE_TO_UART;
272 #if (L2_L3_SIMUL == 0)
273 }
274 else why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
275 #endif
276 // cut ARMIO and UWIRE clocks in big sleep
277 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
278 return(FRAME_STOP); // BIG sleep
279 }
280 #else // Simulation part
281 return(CLOCK_STOP); // DEEP sleep
282 #endif
283 }
284
285
286 /*-------------------------------------------------------*/
287 /* Parameters: none */
288 /* Return: none */
289 /* Functionality: Read the RF configuration, tables etc. */
290 /* from FFS files. */
291 /*-------------------------------------------------------*/
292 const static T_CONFIG_FILE config_files_common[] =
293 {
294 #if (CODE_VERSION != SIMULATION)
295
296 // The first char is NOT part of the filename. It is used for
297 // categorizing the ffs file contents:
298 // f=rf-cal, F=rf-config,
299 // t=tx-cal, T=tx-config,
300 // r=rx-cal, R=rx-config,
301 // s=sys-cal, S=sys-config,
302 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
303 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
304 #if (VCXO_ALGO == 1)
305 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
306 #else
307 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
308 #endif
309
310 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 5 * sizeof(UWORD16),
311 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
312 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
313
314 "s/sys/adccal", &adc_cal, sizeof(adc_cal),
315
316 "S/sys/abb", &abb, sizeof(abb),
317 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
318
319 #endif
320 NULL, 0, 0 // terminator
321 };
322
323 /*-------------------------------------------------------*/
324 /* Parameters: none */
325 /* Return: none */
326 /* Functionality: Read the RF configurations for */
327 /* each band from FFS files. These files */
328 /* are defined for one band, and and used */
329 /* for all bands. */
330 /*-------------------------------------------------------*/
331 const static T_CONFIG_FILE config_files_band[] =
332 {
333 // The first char is NOT part of the filename. It is used for
334 // categorizing the ffs file contents:
335 // f=rf-cal, F=rf-config,
336 // t=tx-cal, T=tx-config,
337 // r=rx-cal, R=rx-config,
338 // s=sys-cal, S=sys-config,
339
340 // generic for all bands
341 // band[0] is used as template for all bands.
342 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
343 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
344 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
345 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
346
347 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
348 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
349 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
350 NULL, 0, 0 // terminator
351 };
352
353 void config_ffs_read(char type)
354 {
355 config_rf_read(type);
356 config_rf_rw_band(type, 1);
357 }
358
359 void config_ffs_write(char type)
360 {
361 config_rf_write(type);
362 config_rf_rw_band(type, 0);
363 }
364
365 void config_rf_read(char type)
366 {
367 const T_CONFIG_FILE *file = config_files_common;
368
369 while (file->name != NULL)
370 {
371 if (type == '*' || type == file->name[0]) {
372 ffs_fread(&file->name[1], file->addr, file->size);
373 }
374 file++;
375 }
376 }
377
378 void config_rf_write(char type)
379 {
380 const T_CONFIG_FILE *file = config_files_common;
381
382 while (file->name != NULL)
383 {
384 if (type == '*' || type == file->name[0]) {
385 ffs_fwrite(&file->name[1], file->addr, file->size);
386 }
387 file++;
388 }
389 }
390
391 void config_rf_rw_band(char type, UWORD8 read)
392 {
393 const T_CONFIG_FILE *f1 = config_files_band;
394 UWORD8 i;
395 WORD32 offset;
396 char name[64];
397 char *p;
398 UWORD8 std = l1_config.std.id;
399
400 #if FFS_WORKAROUND == 1
401 struct stat_s stat;
402 UWORD16 time;
403 #endif
404 for (i=0; i< GSM_BANDS; i++)
405 {
406 if(std_config[std].band[i] !=0 )
407 {
408 f1 = &config_files_band[0];
409 while (f1->name != NULL)
410 {
411 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
412 p = ((char *) &rf_band[i]) + offset;
413 if (type == '*' || type == f1->name[0])
414 {
415 strcpy(name, &f1->name[1]);
416 strcat(name, ".");
417 strcat(name, band_config[std_config[std].band[i]].name);
418
419 if (read == 1)
420 ffs_fread(name, p, f1->size);
421 else //write == 0
422 {
423 ffs_fwrite(name, p, f1->size);
424
425 // wait until ffs write has finished
426 #if FFS_WORKAROUND == 1
427 stat.inode = 0;
428 time = 0;
429
430 do {
431 rvf_delay(10); // in milliseconds
432 time += 10;
433 ffs_stat(name, &stat);
434 } while (stat.inode == 0 && time < 500);
435 #endif
436 }
437 }
438 f1++;
439 }
440 }
441 }
442 }
443
444 /*-------------------------------------------------------*/
445 /* Cust_init_std() */
446 /*-------------------------------------------------------*/
447 /* Parameters : */
448 /* Return : */
449 /* Functionality : Init Standard variable configuration */
450 /*-------------------------------------------------------*/
451 void Cust_init_std(void)
452 {
453 UWORD8 std = l1_config.std.id;
454 UWORD8 band1, band2;
455 T_RF_BAND *pt1, *pt2;
456
457 band1 = std_config[std].band[0];
458 band2 = std_config[std].band[1];
459
460 //get these from std
461 pt1 = band_config[band1].addr;
462 pt2 = band_config[band2].addr;
463
464 // copy rf-struct from default flash to ram
465 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
466
467 if(std_config[std].band[1] != BAND_NONE )
468 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
469
470 // Read all RF and system configuration from FFS *before* we copy any of
471 // the rf structure variables to other places, like L1.
472
473 config_ffs_read('*');
474
475 l1_config.std.first_radio_freq = std_config[std].first_arfcn;
476
477 if(band2!=0)
478 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
479 else
480 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
481
482 // if band2 is not used it is initialised with zeros
483 l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
484 if(band2!=0)
485 l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
486
487 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
488 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
489 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
490 l1_config.std.cal_freq1_band1 = 0;
491 l1_config.std.cal_freq1_band2 = 0;
492
493 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
494 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
495 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
496 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
497 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
498
499 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
500 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
501 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
502 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
503 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
504
505 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
506
507 // init variable indicating which radio bands are supported by the chosen RF
508 l1_config.std.radio_band_support = rf.radio_band_support;
509 }
510
511
512 /*-------------------------------------------------------*/
513 /* Cust_init_params() */
514 /*-------------------------------------------------------*/
515 /* Parameters : */
516 /* Return : */
517 /* Functionality : Init RF dependent paramters (AGC, TX) */
518 /*-------------------------------------------------------*/
519 void Cust_init_params(void)
520 {
521
522 #if (CODE_VERSION==SIMULATION)
523 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
524 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
525
526 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
527 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
528 #else
529 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
530 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
531 #endif
532
533
534 // Convert SYNTH_SETUP_TIME into SPLIT.
535 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
536 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
537 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
538
539 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
540 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
541
542 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
543 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
544
545 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
546 TA_MAX -
547 l1_config.params.tx_synth_setup_time -
548 EPSILON_OFFS;
549
550 // TX duration = ramp up time + burst duration (data + tail bits)
551 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
552 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
553
554 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
555 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
556
557 // time for the end of RX and TX TPU scenarios
558 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
559 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
560
561 // FB26 anchoring time is computed backward to leave only 6 qbit margin between
562 // FB26 window and next activity (RX time tracking).
563 // This margin is used as follow:
564 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
565 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
566 // ---------
567 // Total: 3 qbit
568
569 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
570 #if (CODE_VERSION == SIMULATION)
571 // simulator: end of scenario not included in window (no serialization)
572 1 -
573 #else
574 // RF dependent end of RX TPU scenario
575 l1_config.params.rx_tpu_scenario_ending -
576 #endif
577 EPSILON_SYNC -
578 TPU_SLEEP_LOAD -
579 SERV_OFFS_REST_LOAD -
580 FB26_ACQUIS_DURATION -
581 PROVISION_TIME +
582 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
583
584 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
585 PROVISION_TIME -
586 l1_config.params.rx_synth_setup_time -
587 EPSILON_OFFS;
588
589 l1_config.params.guard_bits = rf.tx.guard_bits;
590
591 l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
592 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
593
594 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
595 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
596 l1_config.params.low_agc = rf.rx.agc.low_agc;
597 l1_config.params.high_agc = rf.rx.agc.high_agc;
598 l1_config.params.il_min = IL_MIN;
599
600 l1_config.params.fixed_txpwr = FIXED_TXPWR;
601 l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
602 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
603
604 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
605 l1_config.params.psi_st = rf.afc.psi_st;
606 l1_config.params.psi_st_32 = rf.afc.psi_st_32;
607 l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
608
609 #if (CODE_VERSION == SIMULATION)
610 #if (VCXO_ALGO == 1)
611 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
612 #endif
613 #else
614 #if (VCXO_ALGO == 1)
615 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
616 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
617 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
618 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
619 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
620 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
621 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
622 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
623 #endif
624 #endif
625
626 #if DCO_ALGO
627 #if (RF == 10)
628 // Enable DCO algorithm for direct conversion RFs
629 l1_config.params.dco_enabled = TRUE;
630 #else
631 l1_config.params.dco_enabled = FALSE;
632 #endif
633 #endif
634
635 #if (ANALOG == 1)
636 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
637 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
638 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
639 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
640 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
641 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
642 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
643 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
644 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
645 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
646 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
647 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
648 #endif
649 #if (ANALOG == 2)
650 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
651 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
652 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
653 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
654 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
655 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
656 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
657 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
658 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
659 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
660 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
661 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
662 l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
663 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
664 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
665 #endif
666 #if (ANALOG == 3)
667 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
668 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
669 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
670 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
671 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
672 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
673 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
674 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
675 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
676 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
677 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
678 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0
679 l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
680 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
681 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
682 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
683 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
684 l1_config.params.vaud_cfg = abb[ABB_VAUDCR]; // value at reset
685 l1_config.params.vauo_onoff = abb[ABB_VAUOCR]; // speech on AUX and EAR
686 l1_config.params.vaus_vol = abb[ABB_VAUSCR]; // value at reset
687 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
688 #endif
689
690 // global variable for access to deep sleep time
691 l1_config.params.sleep_time = 0;
692 }
693
694
695 /************************************/
696 /* Automatic Gain Control */
697 /************************************/
698
699 /*-------------------------------------------------------*/
700 /* Cust_get_agc_from_IL() */
701 /*-------------------------------------------------------*/
702 /* Parameters : */
703 /* Return : */
704 /* Functionality : returns agc value */
705 /*-------------------------------------------------------*/
706 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id)
707 {
708 // radio_freq currently not used
709 // this parameter is passed in order to allow band dependent tables for specific RFs
710 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
711
712 if (agc_index > 120)
713 agc_index = 120; // Clip agc_index
714
715 switch (table_id)
716 {
717 case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]);
718 case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]);
719 case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]);
720 }
721 }
722
723 /*-------------------------------------------------------*/
724 /* Cust_get_agc_band */
725 /*-------------------------------------------------------*/
726 /* Parameters : radio_freq */
727 /* Return : band number */
728 /* Functionality : Computes the band for RF calibration */
729 /*-------------------------------------------------------*/
730 /*---------------------------------------------*/
731
732
733 #if (CODE_VERSION == SIMULATION)
734 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
735 #else
736 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
737 #endif
738 {
739 WORD32 i ;
740
741 for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++)
742 {
743 if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound)
744 return(i);
745 }
746 // Should never happen!
747 return(0);
748 }
749
750 /*-------------------------------------------------------*/
751 /* Cust_is_band_high */
752 /*-------------------------------------------------------*/
753 /* Parameters : arfcn */
754 /* Return : 0 if low band */
755 /* 1 if high band */
756 /* Functionality : Generic function which return 1 if */
757 /* arfcn is in the high band */
758 /*-------------------------------------------------------*/
759
760 UWORD8 Cust_is_band_high(UWORD16 radio_freq)
761 {
762 UWORD16 max_carrier;
763 UWORD8 std = l1_config.std.id;
764
765 max_carrier = band_config[std_config[std].band[0]].max_carrier;
766
767 return(((radio_freq >= l1_config.std.first_radio_freq) &&
768 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
769 }
770
771 /*-------------------------------------------------------*/
772 /* l1ctl_encode_delta2() */
773 /*-------------------------------------------------------*/
774 /* Parameters : */
775 /* Return : */
776 /* Functionality : */
777 /*-------------------------------------------------------*/
778 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
779 {
780 WORD8 delta2_freq;
781 UWORD16 i;
782 UWORD16 arfcn;
783 UWORD8 band;
784
785 band = Cust_is_band_high(radio_freq);
786 arfcn = Convert_l1_radio_freq(radio_freq);
787
788 i = Cust_get_agc_band(arfcn,band); //
789 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
790
791 //temperature compensation
792 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
793 {
794 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
795 {
796 delta2_freq += rf_band[band].rx.temp[i].agc_calib;
797 break;
798 }
799 }
800
801 return(delta2_freq);
802 }
803
804 /************************************/
805 /* TX Management */
806 /************************************/
807 /*-------------------------------------------------------*/
808 /* Cust_get_ramp_tab */
809 /*-------------------------------------------------------*/
810 /* Parameters : */
811 /* Return : */
812 /* Functionality : */
813 /*-------------------------------------------------------*/
814
815 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
816 {
817 UWORD16 index_up, index_down,j, arfcn;
818 UWORD8 band;
819
820 band = Cust_is_band_high(radio_freq);
821 arfcn = Convert_l1_radio_freq(radio_freq);
822
823 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
824 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
825
826 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
827 for (j=0; j<16; j++)
828 {
829 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
830 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
831 0x14;
832 }
833 #endif
834 }
835
836 /*-------------------------------------------------------*/
837 /* get_pwr_data */
838 /*-------------------------------------------------------*/
839 /* Parameters : */
840 /* Return : */
841 /* Functionality : */
842 /*-------------------------------------------------------*/
843
844 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
845 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq)
846 {
847
848 UWORD16 i,j;
849 UWORD16 arfcn;
850 UWORD8 band;
851
852 #if(ORDER2_TX_TEMP_CAL==1)
853 WORD16 pwr_data;
854 #else
855 UWORD16 pwr_data;
856 #endif
857
858 band = Cust_is_band_high(radio_freq);
859 arfcn = Convert_l1_radio_freq(radio_freq);
860
861 i = rf_band[band].tx.levels[txpwr].chan_cal_index;
862 j=0;
863 // get uncalibrated apc
864 pwr_data = rf_band[band].tx.levels[txpwr].apc;
865
866 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
867 j++;
868
869 // channel calibrate apc
870 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
871
872 // temperature compensate apc
873 {
874 T_TX_TEMP_CAL *pt;
875
876 pt = rf_band[band].tx.temp;
877 while ((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature)
878 pt++;
879 #if(ORDER2_TX_TEMP_CAL==1)
880 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
881 if(pwr_data < 0) pwr_data = 0;
882 #else
883 pwr_data += pt->apc_calib;
884 #endif
885 }
886 return(pwr_data);
887 }
888 #endif
889 /*-------------------------------------------------------*/
890 /* Cust_Init_Layer1 */
891 /*-------------------------------------------------------*/
892 /* Parameters : */
893 /* Return : */
894 /* Functionality : Load and boot the DSP */
895 /* Initialize shared memory and L1 data structures */
896 /*-------------------------------------------------------*/
897
898 void Cust_Init_Layer1(void)
899 {
900 T_MMI_L1_CONFIG cfg;
901
902 // Get the current band configuration from the flash
903 #if (OP_WCP==1)
904 extern unsigned char ffs_GetBand();
905 cfg.std = ffs_GetBand();
906 #else // NO OP_WCP
907 // cfg.std = std;
908 cfg.std = STD;
909 #endif // OP_WCP
910
911 cfg.tx_pwr_code = 1;
912
913 // sleep management configuration
914 cfg.pwr_mngt = 0;
915 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
916 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
917
918
919
920 #if (CODE_VERSION != SIMULATION)
921 cfg.dwnld = DWNLD; //external define from makefile
922 #endif
923
924 l1_initialize(&cfg);
925
926 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
927 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
928
929 }
930
931
932 /*****************************************************************************************/
933 /*************************** TESTMODE functions **********************************/
934 /*****************************************************************************************/
935
936
937
938 /*------------------------------------------------------*/
939 /* madc_hex_2_physical */
940 /*------------------------------------------------------*/
941 /* Parameters : */
942 /* Return : */
943 /* Functionality : Function to convert MAD hexadecimal */
944 /* values into physical values */
945 /*------------------------------------------------------*/
946
947 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
948 {
949 WORD16 i;
950 UWORD16 y;
951 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
952 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
953
954 //store raw ADC values
955 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
956
957 // Convert Vbat [mV] : direct equation with slope and offset compensation
958 for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
959 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
960
961 /*Convert RF Temperature [Celsius]: binsearch into a table*/
962 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
963 while((Smax-Smin) > 1 )
964 {
965 if(y < temperature[index].adc)
966 Smax=index;
967 else
968 Smin=index;
969
970 index = (Smax+Smin)/2;
971 }
972 adc.converted[ADC_RFTEMP] = temperature[index].temp;
973
974 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
975 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
976
977 //store converted ADC values
978 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
979 }
980
981
982 /*------------------------------------------------------*/
983 /* get_cal_from_nvmem */
984 /*------------------------------------------------------*/
985 /* Parameters : */
986 /* Return : */
987 /* Functionality : Copy calibrated parameter to */
988 /* calibration structure in RAM */
989 /*------------------------------------------------------*/
990
991 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
992 {
993
994 }
995
996 /*------------------------------------------------------*/
997 /* save_cal_from_nvmem */
998 /*------------------------------------------------------*/
999 /* Parameters : */
1000 /* Return : */
1001 /* Functionality : Copy calibrated structure from RAM */
1002 /* into NV memory */
1003 /*------------------------------------------------------*/
1004
1005 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1006 {
1007 #if (OP_WCP == 1)
1008 // FFS backup implementation an Avenger 2
1009 // Request MPU-S to backup the FFS
1010 // after full calibration of device
1011 extern void ffs_backup(void);
1012 ffs_backup();
1013 #endif
1014 return (0);
1015 }
1016
1017 #if (TRACE_TYPE == 4)
1018
1019 /*------------------------------------------------------*/
1020 /* l1_cst_l1_parameters */
1021 /*------------------------------------------------------*/
1022 /* Parameters : s: pointer on configuration string */
1023 /* Return : nothing: global var are set */
1024 /* Functionality : Set global L1 vars for dynamic trace */
1025 /* and configuration */
1026 /* */
1027 /* This function is called when a CST message is sent */
1028 /* from the Condat Panel. */
1029 /*------------------------------------------------------*/
1030 void l1_cst_l1_parameters(char *s)
1031 {
1032 /*
1033 a sample command string can be:
1034 L1_PARAMS=<1,2,3,4,5> or
1035 L1_PARAMS=<1,23,3E32,4,5>
1036 with n parameters (here: 5 params); n>=1
1037 parameters are decoded as hexadecimal unsigned integers (UWORD16)
1038 */
1039
1040 UWORD8 uNParams = 0; /* Number of parameters */
1041 UWORD32 aParam[10]; /* Parameters array */
1042 UWORD8 uIndex = 0;
1043
1044 /* *** retrieve all parameters *** */
1045 while (s[uIndex] != '<') uIndex++;
1046 uIndex++;
1047 aParam[0] = 0;
1048
1049 /* uIndex points on 1st parameter */
1050
1051 while (s[uIndex] != '>')
1052 {
1053 if (s[uIndex] == ',')
1054 {
1055 uNParams++;
1056 aParam[uNParams] = 0;
1057 }
1058 else
1059 {
1060 /* uIndex points on a parameter char */
1061 UWORD8 uChar = s[uIndex];
1062 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
1063 if ((uChar>='0') && (uChar<='9'))
1064 aParam[uNParams] += (uChar - '0'); /* retrieve value */
1065 else if ((uChar>='A') && (uChar<='F'))
1066 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
1067 else if ((uChar>='a') && (uChar<='f'))
1068 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
1069 }
1070
1071 uIndex++; /* go to next char */
1072 }
1073
1074 /* increment number of params */
1075 uNParams++;
1076
1077 /* *** handle parameters *** */
1078 /*
1079 1st param: command type
1080 2nd param: argument for command type
1081 */
1082 switch (aParam[0])
1083 {
1084 case 0: /* Trace setting */
1085 /* The 2nd parameter contains the trace bitmap*/
1086 if (uNParams >=2)
1087 trace_info.current_config->l1_dyn_trace = aParam[1];
1088 else
1089 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
1090 Trace_dyn_trace_change();
1091 break;
1092 default: /* ignore it */
1093 break;
1094 } // switch
1095 }
1096
1097 #endif
1098
1099 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
1100 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
1101 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
1102 (CHIPSET == 11) || (CHIPSET == 12))
1103 /*-------------------------------------------------------*/
1104 /* power_down_config() : temporary implementation !!! */
1105 /*-------------------------------------------------------*/
1106 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
1107 /* clocks to be cut in BIG sleep */
1108 /* Return : */
1109 /* Functionality : set the l1s variables */
1110 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
1111 /* according to the desired mode. */
1112 /*-------------------------------------------------------*/
1113 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
1114 {
1115 #if (OP_L1_STANDALONE == 1)
1116 if(sleep_mode != NO_SLEEP)
1117 #endif
1118 {
1119 l1_config.pwr_mngt = PWR_MNGT;
1120 l1s.pw_mgr.mode_authorized = sleep_mode;
1121 l1s.pw_mgr.clocks = clocks;
1122 }
1123
1124 #if (OP_L1_STANDALONE == 0)
1125 l1s.pw_mgr.enough_gaug = FALSE;
1126 #endif
1127 }
1128 #endif
1129
1130 /* glowing,2004-06-16, import from M188 */
1131 void layer1_em_get_rxlevqual(WORD32 *l1_rxlev_scell,WORD32 *l1_rxlev_dedic_sub,
1132 WORD32 *l1_rxqual_dedic,WORD32 *l1_rxqual_dedic_sub)
1133 {
1134 /*
1135 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.acc));
1136 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.nbr_meas));
1137 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.acc_sub));
1138 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub));
1139 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_full));
1140 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full));
1141 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub));
1142 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub));
1143 */
1144 if(l1a_l1s_com.Scell_info.meas.nbr_meas != 0){
1145 *l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(l1a_l1s_com.Scell_info.meas.nbr_meas);
1146 }else{
1147 *l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(4);
1148 }
1149 // xmzhou_trace_string_value("l1_rxlev_scell",(UINT32)(*l1_rxlev_scell));
1150
1151 if(l1a_l1s_com.Smeas_dedic.nbr_meas_sub !=0){
1152 *l1_rxlev_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub);
1153 }else{
1154 *l1_rxlev_dedic_sub=0;
1155 }
1156 // xmzhou_trace_string_value("l1_rxlev_dedic_sub",(UINT32)(*l1_rxlev_dedic_sub));
1157
1158 if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full !=0){
1159 *l1_rxqual_dedic=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_full)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full);
1160 }else{
1161 *l1_rxqual_dedic=0;
1162 }
1163 // xmzhou_trace_string_value("l1_rxqual_dedic",(UINT32)(*l1_rxqual_dedic));
1164
1165 if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub){
1166 *l1_rxqual_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub);
1167 }else{
1168 *l1_rxqual_dedic_sub=0;
1169 }
1170 // xmzhou_trace_string_value("l1_rxqual_dedic_sub",(UINT32)(*l1_rxqual_dedic_sub));
1171 }
1172
1173 void layer1_em_get_mode(WORD32 *l1_mode)
1174 {
1175 *l1_mode=l1a_l1s_com.mode;
1176 }
1177
1178 /*glowing,2004-06-16, end of import */
1179