FreeCalypso > hg > freecalypso-sw
comparison gsm-fw/L1/cust1/l1_cust.c @ 517:eafadfee35b2
gsm-fw/L1/cust?: imported Leonardo, LoCosto and MV100 versions
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Thu, 10 Jul 2014 03:43:04 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
516:78495749970a | 517:eafadfee35b2 |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * L1_CUST.C | |
4 * | |
5 * Filename l1_cust.c | |
6 * Copyright 2003 (C) Texas Instruments | |
7 * | |
8 ************* Revision Controle System Header *************/ | |
9 | |
10 //#define GLOBAL | |
11 | |
12 #include "l1sw.cfg" | |
13 #include "l1_types.h" | |
14 | |
15 #include "string.h" | |
16 #include "l1_confg.h" | |
17 #include "l1_const.h" | |
18 #include "ulpd.h" | |
19 #include "tm_defs.h" | |
20 #include "l1_types.h" | |
21 #include "l1_time.h" | |
22 #include "l1_trace.h" | |
23 #include "sys_types.h" | |
24 #include "l1_macro.h" | |
25 #if (OP_L1_STANDALONE == 1) | |
26 #include "serialswitch_core.h" | |
27 #else | |
28 #include "uart/serialswitch.h" | |
29 #endif | |
30 | |
31 #include "abb.h" | |
32 | |
33 #if(OP_L1_STANDALONE == 0) | |
34 #include "buzzer/buzzer.h" // for BZ_KeyBeep_OFF function | |
35 #include "sim/sim.h" | |
36 #endif | |
37 | |
38 #if TESTMODE | |
39 #include "l1tm_defty.h" | |
40 #endif | |
41 | |
42 #if (AUDIO_TASK == 1) | |
43 #include "l1audio_const.h" | |
44 #include "l1audio_cust.h" | |
45 #include "l1audio_defty.h" | |
46 #endif | |
47 | |
48 #if (L1_GTT == 1) | |
49 #include "l1gtt_const.h" | |
50 #include "l1gtt_defty.h" | |
51 #endif | |
52 | |
53 #if (L1_MP3 == 1) | |
54 #include "l1mp3_defty.h" | |
55 #endif | |
56 | |
57 #if (L1_MIDI == 1) | |
58 #include "l1midi_defty.h" | |
59 #endif | |
60 | |
61 #include "l1_defty.h" | |
62 #include "l1_msgty.h" | |
63 #include "l1_tabs.h" | |
64 #include "l1_varex.h" | |
65 #include "l1_proto.h" | |
66 #if (VCXO_ALGO == 1) | |
67 #include "l1_ctl.h" | |
68 #endif | |
69 | |
70 | |
71 #if (RF_FAM == 61) | |
72 #include "drp_drive.h" | |
73 #include "tpudrv61.h" | |
74 #include "l1_rf61.h" | |
75 #include "l1_rf61.c" | |
76 #endif | |
77 | |
78 | |
79 #if (RF_FAM == 60 ) | |
80 #include "drp_drive.h" | |
81 #include "tpudrv60.h" | |
82 #include "l1_rf60.h" | |
83 #include "l1_rf60.c" | |
84 //#include "rf60.h" | |
85 #endif | |
86 | |
87 #if (RF_FAM == 43) | |
88 #include "tpudrv43.h" | |
89 #include "l1_rf43.h" | |
90 #include "l1_rf43.c" | |
91 #endif | |
92 | |
93 #if (RF_FAM == 35) | |
94 #include "tpudrv35.h" | |
95 #include "l1_rf35.h" | |
96 #include "l1_rf35.c" | |
97 #endif | |
98 | |
99 #if (RF_FAM == 12) | |
100 #include "tpudrv12.h" | |
101 #include "l1_rf12.h" | |
102 #include "l1_rf12.c" | |
103 #endif | |
104 | |
105 #if (RF_FAM == 10) | |
106 #include "tpudrv10.h" | |
107 #include "l1_rf10.h" | |
108 #include "l1_rf10.c" | |
109 #endif | |
110 | |
111 #if (RF_FAM == 8) | |
112 #include "tpudrv8.h" | |
113 #include "l1_rf8.h" | |
114 #include "l1_rf8.c" | |
115 #endif | |
116 | |
117 #if (RF_FAM == 2) | |
118 #include "l1_rf2.h" | |
119 #include "l1_rf2.c" | |
120 #endif | |
121 | |
122 #if (DRP_FW_EXT == 1) | |
123 #include "l1_drp_inc.h" | |
124 #include "l1_ver.h" | |
125 #endif | |
126 | |
127 | |
128 // Nucleus functions | |
129 extern INT TMD_Timer_State; | |
130 extern UWORD32 TMD_Timer; // for big sleep | |
131 extern UWORD32 TCD_Priority_Groups; | |
132 extern VOID *TCD_Current_Thread; | |
133 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES]; | |
134 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES]; | |
135 extern TC_PROTECT TCD_System_Protect; | |
136 | |
137 #if (L2_L3_SIMUL == 0) | |
138 #define FFS_WORKAROUND 0 | |
139 #else | |
140 #define FFS_WORKAROUND 0 | |
141 #endif | |
142 #if (FFS_WORKAROUND == 1) | |
143 #include "ffs/ffs.h" | |
144 #else | |
145 /* typedef signed int int32; | |
146 typedef signed char effs_t;*/ | |
147 typedef signed int filesize_t; | |
148 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size); | |
149 #if (DRP_FW_EXT == 0) | |
150 effs_t ffs_fread(const char *name, void *addr, filesize_t size); | |
151 #endif | |
152 #endif | |
153 | |
154 // Import band configuration from Flash module (need to replace by an access function) | |
155 //extern UWORD8 std; | |
156 extern T_L1_CONFIG l1_config; | |
157 extern T_L1S_GLOBAL l1s; | |
158 | |
159 #if(OP_L1_STANDALONE == 0) | |
160 extern SYS_BOOL cama_sleep_status(void); | |
161 #endif | |
162 | |
163 #if (CODE_VERSION != SIMULATION) | |
164 // Import serial switch configuration | |
165 #if (CHIPSET == 12) | |
166 extern char ser_cfg_info[3]; | |
167 #else | |
168 extern char ser_cfg_info[2]; | |
169 #endif | |
170 #endif | |
171 | |
172 #if(REL99 && FF_PRF) | |
173 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, | |
174 UWORD8 number_uplink_timeslot, | |
175 T_TX_LEVEL *p_tx_level); | |
176 #endif | |
177 | |
178 | |
179 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); | |
180 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); | |
181 void config_rf_rw_band(char type, UWORD8 read); | |
182 void config_rf_read(char type); | |
183 void config_rf_write(char type); | |
184 | |
185 #if (RF_FAM == 61) | |
186 #include "drp_api.h" | |
187 | |
188 | |
189 extern T_DRP_SW_DATA drp_sw_data_init; | |
190 extern T_DRP_SW_DATA drp_sw_data_calib; | |
191 extern T_DRP_SW_DATA drp_sw_data_calib_saved; | |
192 #endif | |
193 | |
194 enum { | |
195 RF_ID = 0, | |
196 ADC_ID = 1 | |
197 }; | |
198 | |
199 #if (L1_FF_MULTIBAND == 0) | |
200 /*-------------------------------------------------------*/ | |
201 /* Parameters: none */ | |
202 /* Return: none */ | |
203 /* Functionality: Defines the location of rf-struct */ | |
204 /* for each std. */ | |
205 /*-------------------------------------------------------*/ | |
206 //omaps00090550 #83 warinng removal | |
207 static const T_BAND_CONFIG band_config[] = | |
208 { /*ffs name, default addr, max carrier, min tx pwr */ | |
209 {"",(T_RF_BAND *) 0,0,0},//undefined | |
210 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM | |
211 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS | |
212 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS | |
213 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850 | |
214 #if (RF_FAM == 10) | |
215 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment | |
216 #endif | |
217 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry | |
218 }; | |
219 | |
220 /*-------------------------------------------------------*/ | |
221 /* Parameters: none */ | |
222 /* Return: none */ | |
223 /* Functionality: Defines the indices into band_config */ | |
224 /* for each std. */ | |
225 /*-------------------------------------------------------*/ | |
226 const T_STD_CONFIG std_config[] = | |
227 { | |
228 /* band1 index, band2 index, txpwr turning point, first arfcn*/ | |
229 { 0, 0, 0, 0 }, // std = 0 not used | |
230 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM | |
231 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM | |
232 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS | |
233 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS | |
234 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL | |
235 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT | |
236 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850 | |
237 #if (RF_FAM == 10) | |
238 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900 | |
239 #else | |
240 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900 | |
241 #endif | |
242 }; | |
243 #endif //if (L1_FF_MULTIBAND == 0) | |
244 | |
245 /*-------------------------------------------------------*/ | |
246 /* Prototypes of external functions used in this file. */ | |
247 /*-------------------------------------------------------*/ | |
248 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config); | |
249 #if (L1_FF_MULTIBAND == 0) | |
250 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq); | |
251 #endif | |
252 /*-------------------------------------------------------*/ | |
253 /* Cust_recover_Os() */ | |
254 /*-------------------------------------------------------*/ | |
255 /* */ | |
256 /* Description: adjust OS from sleep duration */ | |
257 /* ------------ */ | |
258 /* This function fix the : */ | |
259 /* - system clock */ | |
260 /* - Nucleus timers */ | |
261 /* - xxxxxx (customer dependant) */ | |
262 /*-------------------------------------------------------*/ | |
263 | |
264 UWORD8 Cust_recover_Os(void) | |
265 { | |
266 #if (CODE_VERSION != SIMULATION) | |
267 if (l1_config.pwr_mngt == PWR_MNGT) | |
268 { | |
269 UWORD32 current_system_clock; | |
270 | |
271 /***************************************************/ | |
272 // Fix System clock and Nucleus Timers if any.... */ | |
273 /***************************************************/ | |
274 // Fix System clock .... | |
275 current_system_clock = NU_Retrieve_Clock(); | |
276 current_system_clock += l1s.pw_mgr.sleep_duration; | |
277 NU_Set_Clock(current_system_clock); | |
278 | |
279 // Fix Nucleus timer (if needed) .... | |
280 if (TMD_Timer_State == TM_ACTIVE) | |
281 { | |
282 TMD_Timer -= l1s.pw_mgr.sleep_duration; | |
283 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED; | |
284 } | |
285 | |
286 /***************************************************/ | |
287 // Cust dependant part ... */ | |
288 /***************************************************/ | |
289 //............. | |
290 //............. | |
291 //.............. | |
292 return(TRUE); | |
293 | |
294 } | |
295 #endif | |
296 return(TRUE); //omaps00090550 | |
297 } | |
298 | |
299 | |
300 | |
301 /*-------------------------------------------------------*/ | |
302 /* Cust_check_system() */ | |
303 /*-------------------------------------------------------*/ | |
304 /* */ | |
305 /* Description: */ | |
306 /* ------------ */ | |
307 /* GSM 1.5 : */ | |
308 /* - authorize UWIRE clock to be stopped */ | |
309 /* and write value in l1s.pw_mgr.modules_status. */ | |
310 /* - authorize ARMIO clock to be stopped if the light is */ | |
311 /* off and write value in l1s.pw_mgr.modules_status. */ | |
312 /* - check if SIM clock have been stopped */ | |
313 /* before allowing DEEP SLEEP. */ | |
314 /* - check if UARTs are ready to enter deep sleep */ | |
315 /* - choose the sleep mode */ | |
316 /* */ | |
317 /* Return: */ | |
318 /* ------- */ | |
319 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */ | |
320 /*-------------------------------------------------------*/ | |
321 UWORD8 Cust_check_system(void) | |
322 { | |
323 | |
324 #if (CODE_VERSION != SIMULATION) | |
325 if (l1_config.pwr_mngt == PWR_MNGT) | |
326 { | |
327 | |
328 #if (L2_L3_SIMUL == 0) | |
329 // Forbid deep sleep if the light is on | |
330 if(LT_Status()) | |
331 { | |
332 //cut ARMIO and UWIRE clocks in big sleep | |
333 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; | |
334 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON; | |
335 return(FRAME_STOP); // BIG sleep | |
336 } | |
337 | |
338 #if (OP_L1_STANDALONE == 0) | |
339 // Forbid deep sleep if the camera is working | |
340 if(!cama_sleep_status()) | |
341 { | |
342 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA; | |
343 return(FRAME_STOP); // BIG sleep | |
344 } | |
345 | |
346 // Forbid deep sleep if the SIM and UARTs not ready | |
347 #if (REQUIRED_FOR_ESAMPLE_LOCOSTO) | |
348 // Forbid deep sleep if the SIM and UARTs not ready | |
349 if(SIM_SleepStatus()) | |
350 #endif | |
351 { | |
352 #endif | |
353 #endif | |
354 if(SER_UartSleepStatus()) | |
355 { | |
356 return(CLOCK_STOP); // DEEP sleep | |
357 } | |
358 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART; | |
359 #if (L2_L3_SIMUL == 0) | |
360 #if (OP_L1_STANDALONE == 0) | |
361 } | |
362 // Forbid deep sleep if the SIM and UARTs not ready | |
363 #if (REQUIRED_FOR_ESAMPLE_LOCOSTO) | |
364 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM; | |
365 #endif | |
366 #endif | |
367 #endif | |
368 // cut ARMIO and UWIRE clocks in big sleep | |
369 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; | |
370 return(FRAME_STOP); // BIG sleep | |
371 } | |
372 #else // Simulation part | |
373 return(CLOCK_STOP); // DEEP sleep | |
374 #endif | |
375 return(CLOCK_STOP); // omaps00090550 | |
376 } | |
377 | |
378 | |
379 /*-------------------------------------------------------*/ | |
380 /* Parameters: none */ | |
381 /* Return: none */ | |
382 /* Functionality: Read the RF configuration, tables etc. */ | |
383 /* from FFS files. */ | |
384 /*-------------------------------------------------------*/ | |
385 //omaps00090550 #83-d warnimg removal | |
386 static const T_CONFIG_FILE config_files_common[] = | |
387 { | |
388 #if (CODE_VERSION != SIMULATION) | |
389 | |
390 // The first char is NOT part of the filename. It is used for | |
391 // categorizing the ffs file contents: | |
392 // f=rf-cal, F=rf-config, | |
393 // t=tx-cal, T=tx-config, | |
394 // r=rx-cal, R=rx-config, | |
395 // s=sys-cal, S=sys-config, | |
396 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc), | |
397 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support), | |
398 #if (VCXO_ALGO == 1) | |
399 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16), | |
400 #else | |
401 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32), | |
402 #endif | |
403 | |
404 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16), | |
405 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr), | |
406 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE), | |
407 | |
408 "s/sys/adccal", &adc_cal, sizeof(adc_cal), | |
409 | |
410 "S/sys/abb", &abb, sizeof(abb), | |
411 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info), | |
412 | |
413 #if (RF_FAM ==61) | |
414 "S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper), | |
415 #if (DRP_FW_EXT == 0) | |
416 "S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib), | |
417 #endif | |
418 #endif | |
419 | |
420 #endif | |
421 NULL, 0, 0 // terminator | |
422 }; | |
423 | |
424 /*-------------------------------------------------------*/ | |
425 /* Parameters: none */ | |
426 /* Return: none */ | |
427 /* Functionality: Read the RF configurations for */ | |
428 /* each band from FFS files. These files */ | |
429 /* are defined for one band, and and used */ | |
430 /* for all bands. */ | |
431 /*-------------------------------------------------------*/ | |
432 //omaps00090550 #83 warning removal | |
433 static const T_CONFIG_FILE config_files_band[] = | |
434 { | |
435 // The first char is NOT part of the filename. It is used for | |
436 // categorizing the ffs file contents: | |
437 // f=rf-cal, F=rf-config, | |
438 // t=tx-cal, T=tx-config, | |
439 // r=rx-cal, R=rx-config, | |
440 // s=sys-cal, S=sys-config, | |
441 | |
442 // generic for all bands | |
443 // band[0] is used as template for all bands. | |
444 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables), | |
445 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels), | |
446 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table), | |
447 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp), | |
448 | |
449 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands), | |
450 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp), | |
451 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params), | |
452 NULL, 0, 0 // terminator | |
453 }; | |
454 | |
455 void config_ffs_read(char type) | |
456 { | |
457 config_rf_read(type); | |
458 config_rf_rw_band(type, 1); | |
459 } | |
460 | |
461 void config_ffs_write(char type) | |
462 { | |
463 config_rf_write(type); | |
464 config_rf_rw_band(type, 0); | |
465 } | |
466 | |
467 void config_rf_read(char type) | |
468 { | |
469 const T_CONFIG_FILE *file = config_files_common; | |
470 | |
471 while (file->name != NULL) | |
472 { | |
473 if (type == '*' || type == file->name[0]) { | |
474 ffs_fread(&file->name[1], file->addr, file->size); | |
475 } | |
476 file++; | |
477 } | |
478 } | |
479 | |
480 void config_rf_write(char type) | |
481 { | |
482 const T_CONFIG_FILE *file = config_files_common; | |
483 | |
484 while (file->name != NULL) | |
485 { | |
486 if (type == '*' || type == file->name[0]) { | |
487 ffs_fwrite(&file->name[1], file->addr, file->size); | |
488 } | |
489 file++; | |
490 } | |
491 } | |
492 | |
493 void config_rf_rw_band(char type, UWORD8 read) | |
494 { | |
495 const T_CONFIG_FILE *f1 = config_files_band; | |
496 UWORD8 i; | |
497 WORD32 offset; | |
498 char name[64]; | |
499 char *p; | |
500 #if (L1_FF_MULTIBAND == 0) | |
501 UWORD8 std = l1_config.std.id; | |
502 #endif | |
503 | |
504 #if FFS_WORKAROUND == 1 | |
505 struct stat_s stat; | |
506 UWORD16 time; | |
507 #endif | |
508 #if (L1_FF_MULTIBAND == 0) | |
509 for (i=0; i< GSM_BANDS; i++) | |
510 { | |
511 if(std_config[std].band[i] !=0 ) | |
512 { | |
513 #else | |
514 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) | |
515 { | |
516 #endif /*if (L1_FF_MULTIBAND == 0) */ | |
517 f1 = &config_files_band[0]; | |
518 while (f1->name != NULL) | |
519 { | |
520 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes | |
521 p = ((char *) &rf_band[i]) + offset; | |
522 if (type == '*' || type == f1->name[0]) | |
523 { | |
524 strcpy(name, &f1->name[1]); | |
525 strcat(name, "."); | |
526 #if (L1_FF_MULTIBAND == 0) | |
527 strcat(name, band_config[std_config[std].band[i]].name); | |
528 #else | |
529 strcat(name, multiband_rf[i].name); | |
530 #endif /*if (L1_FF_MULTIBAND == 0)*/ | |
531 | |
532 if (read == 1) | |
533 ffs_fread(name, p, f1->size); | |
534 else //write == 0 | |
535 { | |
536 ffs_fwrite(name, p, f1->size); | |
537 | |
538 // wait until ffs write has finished | |
539 #if FFS_WORKAROUND == 1 | |
540 stat.inode = 0; | |
541 time = 0; | |
542 | |
543 do { | |
544 rvf_delay(10); // in milliseconds | |
545 time += 10; | |
546 ffs_stat(name, &stat); | |
547 } while (stat.inode == 0 && time < 500); | |
548 #endif | |
549 } | |
550 } | |
551 f1++; | |
552 } | |
553 } | |
554 #if (L1_FF_MULTIBAND == 0) | |
555 } | |
556 #endif | |
557 } | |
558 | |
559 | |
560 /*-------------------------------------------------------*/ | |
561 /* Cust_init_std() */ | |
562 /*-------------------------------------------------------*/ | |
563 /* Parameters : */ | |
564 /* Return : */ | |
565 /* Functionality : Init Standard variable configuration */ | |
566 /*-------------------------------------------------------*/ | |
567 void Cust_init_std(void) | |
568 #if (L1_FF_MULTIBAND == 0) | |
569 { | |
570 UWORD8 std = l1_config.std.id; | |
571 UWORD8 band1, band2; | |
572 T_RF_BAND *pt1, *pt2; | |
573 | |
574 band1 = std_config[std].band[0]; | |
575 band2 = std_config[std].band[1]; | |
576 | |
577 //get these from std | |
578 pt1 = band_config[band1].addr; | |
579 pt2 = band_config[band2].addr; | |
580 | |
581 // copy rf-struct from default flash to ram | |
582 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND)); | |
583 | |
584 if(std_config[std].band[1] != BAND_NONE ) | |
585 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND)); | |
586 | |
587 // Read all RF and system configuration from FFS *before* we copy any of | |
588 // the rf structure variables to other places, like L1. | |
589 | |
590 config_ffs_read('*'); | |
591 | |
592 l1_config.std.first_radio_freq = std_config[std].first_arfcn; | |
593 | |
594 if(band2!=0) | |
595 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1; | |
596 else | |
597 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0 | |
598 | |
599 // if band2 is not used it is initialised with zeros | |
600 l1_config.std.nbmax_carrier = band_config[band1].max_carrier; | |
601 if(band2!=0) | |
602 l1_config.std.nbmax_carrier += band_config[band2].max_carrier; | |
603 | |
604 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr; | |
605 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr; | |
606 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp; | |
607 l1_config.std.cal_freq1_band1 = 0; | |
608 l1_config.std.cal_freq1_band2 = 0; | |
609 | |
610 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic; | |
611 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att; | |
612 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low; | |
613 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high; | |
614 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq; | |
615 | |
616 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic; | |
617 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att; | |
618 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low; | |
619 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high; | |
620 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq; | |
621 | |
622 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1; | |
623 | |
624 // init variable indicating which radio bands are supported by the chosen RF | |
625 l1_config.std.radio_band_support = rf.radio_band_support; | |
626 | |
627 //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration | |
628 // on a need basis ? | |
629 } | |
630 #else | |
631 { | |
632 UWORD8 i; | |
633 | |
634 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) | |
635 { | |
636 switch(multiband_rf[i].gsm_band_identifier) | |
637 { | |
638 case RF_GSM900: | |
639 rf_band[i]=rf_900; | |
640 break; | |
641 case RF_GSM850: | |
642 rf_band[i]=rf_850; | |
643 break; | |
644 case RF_DCS1800: | |
645 rf_band[i]=rf_1800; | |
646 break; | |
647 case RF_PCS1900: | |
648 rf_band[i]=rf_1900; | |
649 break; | |
650 default: | |
651 break; | |
652 } | |
653 } | |
654 config_ffs_read('*'); | |
655 } | |
656 #endif // if (L1_FF_MULTIBAND == 0) | |
657 | |
658 | |
659 /*-------------------------------------------------------*/ | |
660 /* Cust_init_params() */ | |
661 /*-------------------------------------------------------*/ | |
662 /* Parameters : */ | |
663 /* Return : */ | |
664 /* Functionality : Init RF dependent paramters (AGC, TX) */ | |
665 /*-------------------------------------------------------*/ | |
666 void Cust_init_params(void) | |
667 { | |
668 | |
669 #if (CODE_VERSION==SIMULATION) | |
670 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file | |
671 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file | |
672 | |
673 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME; | |
674 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME; | |
675 #else | |
676 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME; | |
677 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME; | |
678 #endif | |
679 | |
680 | |
681 // Convert SYNTH_SETUP_TIME into SPLIT. | |
682 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin. | |
683 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); | |
684 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); | |
685 | |
686 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time; | |
687 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time; | |
688 | |
689 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC; | |
690 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS; | |
691 | |
692 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - | |
693 TA_MAX - | |
694 l1_config.params.tx_synth_setup_time - | |
695 EPSILON_OFFS; | |
696 | |
697 // TX duration = ramp up time + burst duration (data + tail bits) | |
698 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL; | |
699 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION; | |
700 | |
701 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); | |
702 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); | |
703 | |
704 // time for the end of RX and TX TPU scenarios | |
705 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING; | |
706 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; | |
707 | |
708 // FB26 anchoring time is computed backward to leave only 6 qbit margin between | |
709 // FB26 window and next activity (RX time tracking). | |
710 // This margin is used as follow: | |
711 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD) | |
712 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD) | |
713 // --------- | |
714 // Total: 3 qbit | |
715 | |
716 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - | |
717 #if (CODE_VERSION == SIMULATION) | |
718 // simulator: end of scenario not included in window (no serialization) | |
719 1 - | |
720 #else | |
721 // RF dependent end of RX TPU scenario | |
722 l1_config.params.rx_tpu_scenario_ending - | |
723 #endif | |
724 EPSILON_SYNC - | |
725 TPU_SLEEP_LOAD - | |
726 SERV_OFFS_REST_LOAD - | |
727 FB26_ACQUIS_DURATION - | |
728 PROVISION_TIME + | |
729 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE; | |
730 | |
731 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time + | |
732 PROVISION_TIME - | |
733 l1_config.params.rx_synth_setup_time - | |
734 EPSILON_OFFS; | |
735 | |
736 l1_config.params.guard_bits = rf.tx.guard_bits; | |
737 | |
738 l1_config.params.prg_tx_gsm = rf.tx.prg_tx; | |
739 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet | |
740 | |
741 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; | |
742 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; | |
743 l1_config.params.low_agc = rf.rx.agc.low_agc; | |
744 l1_config.params.high_agc = rf.rx.agc.high_agc; | |
745 l1_config.params.il_min = IL_MIN; | |
746 | |
747 l1_config.params.fixed_txpwr = FIXED_TXPWR; | |
748 l1_config.params.eeprom_afc = rf.afc.eeprom_afc; | |
749 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF; | |
750 l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation | |
751 | |
752 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; | |
753 l1_config.params.psi_st = rf.afc.psi_st; | |
754 l1_config.params.psi_st_32 = rf.afc.psi_st_32; | |
755 l1_config.params.psi_st_inv = rf.afc.psi_st_inv; | |
756 | |
757 #if (CODE_VERSION == SIMULATION) | |
758 #if (VCXO_ALGO == 1) | |
759 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm | |
760 #endif | |
761 #else | |
762 #if (VCXO_ALGO == 1) | |
763 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity | |
764 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity | |
765 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity | |
766 #if (NEW_SNR_THRESHOLD == 0) | |
767 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold | |
768 #else | |
769 l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD; | |
770 #endif /* NEW_SNR_THRESHOLD */ | |
771 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm | |
772 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value | |
773 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm | |
774 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count | |
775 #endif | |
776 #endif | |
777 | |
778 #if DCO_ALGO | |
779 #if (RF_FAM == 10) | |
780 // Enable DCO algorithm for direct conversion RFs | |
781 l1_config.params.dco_enabled = TRUE; | |
782 #else | |
783 l1_config.params.dco_enabled = FALSE; | |
784 #endif | |
785 #endif | |
786 | |
787 #if (ANLG_FAM == 1) | |
788 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
789 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
790 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
791 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
792 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
793 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset | |
794 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
795 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
796 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
797 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
798 l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 | |
799 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
800 #endif | |
801 #if (ANLG_FAM == 2) | |
802 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
803 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
804 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
805 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
806 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
807 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset | |
808 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset | |
809 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
810 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
811 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
812 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
813 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 | |
814 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 | |
815 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
816 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset | |
817 #endif | |
818 #if (ANLG_FAM == 3) | |
819 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
820 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
821 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
822 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
823 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
824 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset | |
825 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled | |
826 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
827 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
828 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
829 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
830 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0 | |
831 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 | |
832 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
833 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset | |
834 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled | |
835 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON" | |
836 l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset | |
837 l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR | |
838 l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset | |
839 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset | |
840 #endif | |
841 | |
842 #if (RF_FAM == 61) | |
843 l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2]; | |
844 l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1]; | |
845 l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2]; | |
846 #endif | |
847 #if (ANLG_FAM == 11) | |
848 l1_config.params.vulgain = abb[ABB_VULGAIN]; | |
849 l1_config.params.vdlgain = abb[ABB_VDLGAIN]; | |
850 l1_config.params.sidetone = abb[ABB_SIDETONE]; | |
851 l1_config.params.ctrl1 = abb[ABB_CTRL1]; | |
852 l1_config.params.ctrl2 = abb[ABB_CTRL2]; | |
853 l1_config.params.ctrl3 = abb[ABB_CTRL3]; | |
854 l1_config.params.ctrl4 = abb[ABB_CTRL4]; | |
855 l1_config.params.ctrl5 = abb[ABB_CTRL5]; | |
856 l1_config.params.ctrl6 = abb[ABB_CTRL6]; | |
857 l1_config.params.popauto = abb[ABB_POPAUTO]; | |
858 l1_config.params.outen1 = abb[ABB_OUTEN1]; | |
859 l1_config.params.outen2 = abb[ABB_OUTEN2]; | |
860 l1_config.params.outen3 = abb[ABB_OUTEN3]; | |
861 l1_config.params.aulga = abb[ABB_AULGA]; | |
862 l1_config.params.aurga = abb[ABB_AURGA]; | |
863 #endif | |
864 } | |
865 | |
866 | |
867 /************************************/ | |
868 /* Automatic Gain Control */ | |
869 /************************************/ | |
870 | |
871 /*-------------------------------------------------------*/ | |
872 /* Cust_get_agc_from_IL() */ | |
873 /*-------------------------------------------------------*/ | |
874 /* Parameters : */ | |
875 /* Return : */ | |
876 /* Functionality : returns agc value */ | |
877 /*-------------------------------------------------------*/ | |
878 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val) | |
879 { | |
880 | |
881 UWORD16 agc_index_temp; | |
882 | |
883 // radio_freq currently not used | |
884 // this parameter is passed in order to allow band dependent tables for specific RFs | |
885 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS) | |
886 | |
887 agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq)); | |
888 agc_index= agc_index_temp>>1; | |
889 if (agc_index > 120) | |
890 agc_index = 120; // Clip agc_index | |
891 | |
892 switch (table_id) | |
893 { | |
894 case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]); | |
895 case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]); | |
896 case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]); | |
897 } | |
898 return (0);//omaps00090550 | |
899 } | |
900 | |
901 /*-------------------------------------------------------*/ | |
902 /* Cust_get_agc_band */ | |
903 /*-------------------------------------------------------*/ | |
904 /* Parameters : radio_freq */ | |
905 /* Return : band number */ | |
906 /* Functionality : Computes the band for RF calibration */ | |
907 /*-------------------------------------------------------*/ | |
908 /*---------------------------------------------*/ | |
909 | |
910 UWORD8 band_number; | |
911 #if (CODE_VERSION == SIMULATION) | |
912 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) | |
913 #else | |
914 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) | |
915 #endif | |
916 { | |
917 // WORD32 i =0 ; //omaps00090550 | |
918 | |
919 for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++) | |
920 { | |
921 if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound) | |
922 return(band_number); | |
923 } | |
924 // Should never happen! | |
925 return(0); | |
926 } | |
927 | |
928 #if (L1_FF_MULTIBAND == 0) | |
929 /*-------------------------------------------------------*/ | |
930 /* Cust_is_band_high */ | |
931 /*-------------------------------------------------------*/ | |
932 /* Parameters : arfcn */ | |
933 /* Return : 0 if low band */ | |
934 /* 1 if high band */ | |
935 /* Functionality : Generic function which return 1 if */ | |
936 /* arfcn is in the high band */ | |
937 /*-------------------------------------------------------*/ | |
938 | |
939 UWORD8 Cust_is_band_high(UWORD16 radio_freq) | |
940 { | |
941 UWORD16 max_carrier; | |
942 UWORD8 std = l1_config.std.id; | |
943 | |
944 max_carrier = band_config[std_config[std].band[0]].max_carrier; | |
945 | |
946 return(((radio_freq >= l1_config.std.first_radio_freq) && | |
947 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2); | |
948 } | |
949 #endif | |
950 | |
951 /*-------------------------------------------------------*/ | |
952 /* l1ctl_encode_delta2() */ | |
953 /*-------------------------------------------------------*/ | |
954 /* Parameters : */ | |
955 /* Return : */ | |
956 /* Functionality : */ | |
957 /*-------------------------------------------------------*/ | |
958 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq) | |
959 { | |
960 WORD8 delta2_freq; | |
961 UWORD16 i; | |
962 UWORD16 arfcn; | |
963 #if (L1_FF_MULTIBAND == 0) | |
964 UWORD8 band; | |
965 | |
966 band = Cust_is_band_high(radio_freq); | |
967 arfcn = Convert_l1_radio_freq(radio_freq); | |
968 #else | |
969 WORD8 band; | |
970 // Corrected for input being rf_freq and not l1_freq | |
971 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
972 #endif | |
973 | |
974 i = Cust_get_agc_band(arfcn,band); // | |
975 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib; | |
976 | |
977 //temperature compensation | |
978 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++) | |
979 { | |
980 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature) | |
981 { | |
982 delta2_freq += rf_band[band].rx.temp[i].agc_calib; | |
983 break; | |
984 } | |
985 } | |
986 | |
987 return(delta2_freq); | |
988 } | |
989 | |
990 #if (L1_FF_MULTIBAND == 0) | |
991 #else | |
992 /*-------------------------------------------------------*/ | |
993 /* l1ctl_get_g_magic() */ | |
994 /*-------------------------------------------------------*/ | |
995 /* Parameters : */ | |
996 /* Return : */ | |
997 /* Functionality : */ | |
998 /*-------------------------------------------------------*/ | |
999 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) | |
1000 { | |
1001 // Corrected for input being rf_freq and not l1_freq | |
1002 return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic); | |
1003 } | |
1004 | |
1005 | |
1006 /*-------------------------------------------------------*/ | |
1007 /* l1ctl_get_lna_att() */ | |
1008 /*-------------------------------------------------------*/ | |
1009 /* Parameters : */ | |
1010 /* Return : */ | |
1011 /* Functionality : */ | |
1012 /*-------------------------------------------------------*/ | |
1013 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) | |
1014 { | |
1015 // The function is provided with rf_freq as input so | |
1016 // convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band | |
1017 return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att); | |
1018 // return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att); | |
1019 } | |
1020 /*-------------------------------------------------------*/ | |
1021 /* l1ctl_encode_delta1() */ | |
1022 /*-------------------------------------------------------*/ | |
1023 /* Parameters : */ | |
1024 /* Return : */ | |
1025 /* Functionality : */ | |
1026 /*-------------------------------------------------------*/ | |
1027 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) | |
1028 { | |
1029 return 0; | |
1030 } | |
1031 /*-------------------------------------------------------*/ | |
1032 /* l1ctl_encode_lna() */ | |
1033 /*-------------------------------------------------------*/ | |
1034 /* Parameters : */ | |
1035 /* Return : */ | |
1036 /* Functionality : */ | |
1037 /*-------------------------------------------------------*/ | |
1038 void l1ctl_encode_lna( UWORD8 input_level, | |
1039 UWORD8 *lna_state, | |
1040 UWORD16 radio_freq) | |
1041 { | |
1042 | |
1043 /*** LNA Hysteresis is implemented as following : | |
1044 | |
1045 | | |
1046 On|---<>----+-------+ | |
1047 | | | | |
1048 LNA | | | | |
1049 | ^ v | |
1050 | | | | |
1051 | | | | |
1052 Off| +-------+----<>----- | |
1053 +-------------------------------- | |
1054 50 40 30 20 input_level /-dBm | |
1055 THR_HIGH THR_LOW ***/ | |
1056 WORD8 band; | |
1057 // Corrected for input to be rf_freq and not l1_freq | |
1058 band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]; | |
1059 if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ? | |
1060 { | |
1061 *lna_state = LNA_ON; // lna_off = FALSE | |
1062 } | |
1063 else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ? | |
1064 { | |
1065 *lna_state = LNA_OFF; // lna off = TRUE | |
1066 } | |
1067 } | |
1068 | |
1069 UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq) | |
1070 { | |
1071 return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq); | |
1072 } | |
1073 | |
1074 #endif //if L1_FF_MULTIBAND == 0) | |
1075 | |
1076 /************************************/ | |
1077 /* TX Management */ | |
1078 /************************************/ | |
1079 /*-------------------------------------------------------*/ | |
1080 /* Cust_get_ramp_tab */ | |
1081 /*-------------------------------------------------------*/ | |
1082 /* Parameters : */ | |
1083 /* Return : */ | |
1084 /* Functionality : | |
1085 Notes: | |
1086 Cal+ | |
1087 APCRAM : Dwn(15:11)Up(10:6)Forced(0) | |
1088 Locosto: | |
1089 APCRAM: Dwn(15:8)Up(7:0) | |
1090 | |
1091 */ | |
1092 /*-------------------------------------------------------*/ | |
1093 | |
1094 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq) | |
1095 { | |
1096 UWORD16 index_up, index_down,j, arfcn; | |
1097 #if (L1_FF_MULTIBAND == 0) | |
1098 UWORD8 band; | |
1099 | |
1100 band = Cust_is_band_high(radio_freq); | |
1101 arfcn = Convert_l1_radio_freq(radio_freq); | |
1102 #else | |
1103 WORD8 band; | |
1104 // Corrected for input being rf_freq and not l1_freq | |
1105 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
1106 #endif //if( L1_FF_MULTIBAND == 0) | |
1107 | |
1108 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index; | |
1109 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index; | |
1110 | |
1111 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) | |
1112 for (j=0; j<16; j++) | |
1113 { | |
1114 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) | | |
1115 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) | | |
1116 0x14; | |
1117 } | |
1118 #endif | |
1119 | |
1120 #if (RF_FAM == 61) | |
1121 // 20 Coeff each 8 (RampDown) + 8 (RampUp) | |
1122 for (j=0; j<20; j++) | |
1123 { | |
1124 a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) | | |
1125 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ; | |
1126 } | |
1127 #endif | |
1128 } | |
1129 | |
1130 /*-------------------------------------------------------*/ | |
1131 /* get_pwr_data */ | |
1132 /*-------------------------------------------------------*/ | |
1133 /* Parameters : */ | |
1134 /* Return : */ | |
1135 /* Functionality : */ | |
1136 /*-------------------------------------------------------*/ | |
1137 | |
1138 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) | |
1139 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq | |
1140 #if (REL99 && FF_PRF) | |
1141 , UWORD8 number_uplink_timeslot | |
1142 #endif | |
1143 ) | |
1144 { | |
1145 | |
1146 UWORD16 i,j; | |
1147 UWORD16 arfcn; | |
1148 | |
1149 T_TX_LEVEL *a_tx_levels; | |
1150 | |
1151 #if (APC_VBAT_COMP == 1) | |
1152 static UWORD16 apc_max_value = APC_MAX_VALUE; | |
1153 #endif | |
1154 | |
1155 #if(ORDER2_TX_TEMP_CAL==1) | |
1156 WORD16 pwr_data; | |
1157 #else | |
1158 UWORD16 pwr_data; | |
1159 #endif | |
1160 | |
1161 #if (L1_FF_MULTIBAND == 0) | |
1162 UWORD8 band; | |
1163 band = Cust_is_band_high(radio_freq); | |
1164 arfcn = Convert_l1_radio_freq(radio_freq); | |
1165 #else | |
1166 WORD8 band; | |
1167 // Corrected for input being rf_freq and not l1_freq | |
1168 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
1169 #endif //if( L1_FF_MULTIBAND == 0) | |
1170 | |
1171 // band = Cust_is_band_high(radio_freq); | |
1172 // arfcn = Convert_l1_radio_freq(radio_freq); | |
1173 | |
1174 a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure | |
1175 | |
1176 #if REL99 | |
1177 #if FF_PRF | |
1178 // uplink power reduction feature which decrease power level in case of uplink multislot | |
1179 a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels); | |
1180 #endif | |
1181 #endif | |
1182 | |
1183 // get uncalibrated apc | |
1184 pwr_data = a_tx_levels->apc; | |
1185 | |
1186 i = a_tx_levels->chan_cal_index; // get index for channel compensation | |
1187 j=0; | |
1188 | |
1189 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit) | |
1190 j++; | |
1191 | |
1192 // channel calibrate apc | |
1193 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; | |
1194 | |
1195 // temperature compensate apc | |
1196 { | |
1197 T_TX_TEMP_CAL *pt; | |
1198 | |
1199 pt = rf_band[band].tx.temp; | |
1200 while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1))) | |
1201 pt++; | |
1202 #if(ORDER2_TX_TEMP_CAL==1) | |
1203 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c | |
1204 if(pwr_data < 0) pwr_data = 0; | |
1205 #else | |
1206 pwr_data += pt->apc_calib; | |
1207 #endif | |
1208 } | |
1209 | |
1210 // Vbat compensate apc | |
1211 #if (APC_VBAT_COMP == 1) | |
1212 | |
1213 if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD) | |
1214 apc_max_value = APC_MAX_VALUE_LOW_BAT; | |
1215 | |
1216 else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD) | |
1217 apc_max_value = APC_MAX_VALUE; | |
1218 | |
1219 // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and | |
1220 // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one | |
1221 | |
1222 if (pwr_data > apc_max_value) | |
1223 pwr_data = apc_max_value; | |
1224 #endif // APC_VBAT_COMP == 1 | |
1225 | |
1226 return(pwr_data); | |
1227 } | |
1228 #endif | |
1229 | |
1230 | |
1231 #if(REL99 && FF_PRF) | |
1232 | |
1233 /*-------------------------------------------------------*/ | |
1234 /* Cust_get_uplink_apc_power_reduction */ | |
1235 /*-------------------------------------------------------*/ | |
1236 /* Parameters : */ | |
1237 /* - frenquency band */ | |
1238 /* - modulation type */ | |
1239 /* - number of uplink timeslot */ | |
1240 /* - pointer to radio power control structure */ | |
1241 /* Return : */ | |
1242 /* - pointer to radio power control structure */ | |
1243 /* */ | |
1244 /* Functionality : This function returns a pointer to */ | |
1245 /* the radio power control structure after power */ | |
1246 /* reduction processing. */ | |
1247 /* Depending of the number of uplink timeslot, the */ | |
1248 /* analogue power control (apc) value can be reduced */ | |
1249 /* in order to limit effect of terminal heat */ | |
1250 /* dissipation due to power amplifier. */ | |
1251 /*-------------------------------------------------------*/ | |
1252 | |
1253 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, | |
1254 UWORD8 number_uplink_timeslot, | |
1255 T_TX_LEVEL *p_tx_level) | |
1256 { | |
1257 T_TX_LEVEL *p_power_reduction_tx_level; | |
1258 | |
1259 #if TESTMODE | |
1260 if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE)) | |
1261 return p_tx_level ; // return without any power reduction | |
1262 #endif | |
1263 | |
1264 if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT)) | |
1265 { | |
1266 number_uplink_timeslot--; // index start from 0 | |
1267 } | |
1268 else | |
1269 { | |
1270 return p_tx_level; // abnormal case we do not apply any power reduction | |
1271 } | |
1272 | |
1273 p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]); | |
1274 | |
1275 // We select the lowest power level in order to apply power reduction | |
1276 #if (CODE_VERSION != SIMULATION) | |
1277 if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power | |
1278 #else | |
1279 if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse | |
1280 #endif | |
1281 return p_power_reduction_tx_level; | |
1282 else | |
1283 return p_tx_level; | |
1284 } | |
1285 | |
1286 #endif | |
1287 | |
1288 /*-------------------------------------------------------*/ | |
1289 /* Cust_Init_Layer1 */ | |
1290 /*-------------------------------------------------------*/ | |
1291 /* Parameters : */ | |
1292 /* Return : */ | |
1293 /* Functionality : Load and boot the DSP */ | |
1294 /* Initialize shared memory and L1 data structures */ | |
1295 /*-------------------------------------------------------*/ | |
1296 | |
1297 void Cust_Init_Layer1(void) | |
1298 { | |
1299 T_MMI_L1_CONFIG cfg; | |
1300 | |
1301 // Get the current band configuration from the flash | |
1302 #if (OP_WCP==1) && (OP_L1_STANDALONE!=1) | |
1303 extern unsigned char ffs_GetBand(); | |
1304 cfg.std = ffs_GetBand(); | |
1305 #else // NO OP_WCP | |
1306 // cfg.std = std; | |
1307 cfg.std = STD; | |
1308 #endif // OP_WCP | |
1309 | |
1310 cfg.tx_pwr_code = 1; | |
1311 | |
1312 // sleep management configuration | |
1313 | |
1314 #if(L1_POWER_MGT == 0) | |
1315 cfg.pwr_mngt = 0; | |
1316 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode | |
1317 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep | |
1318 #endif | |
1319 #if(L1_POWER_MGT == 1) | |
1320 cfg.pwr_mngt = 1; | |
1321 cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode | |
1322 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep | |
1323 #endif | |
1324 | |
1325 | |
1326 | |
1327 | |
1328 | |
1329 #if (CODE_VERSION != SIMULATION) | |
1330 cfg.dwnld = DWNLD; //external define from makefile | |
1331 #endif | |
1332 | |
1333 l1_initialize(&cfg); | |
1334 | |
1335 //add below line for CSR 174476 | |
1336 trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init | |
1337 | |
1338 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID); | |
1339 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID); | |
1340 | |
1341 } | |
1342 | |
1343 | |
1344 /*****************************************************************************************/ | |
1345 /*************************** TESTMODE functions **********************************/ | |
1346 /*****************************************************************************************/ | |
1347 | |
1348 | |
1349 | |
1350 /*------------------------------------------------------*/ | |
1351 /* madc_hex_2_physical */ | |
1352 /*------------------------------------------------------*/ | |
1353 /* Parameters : */ | |
1354 /* Return : */ | |
1355 /* Functionality : Function to convert MAD hexadecimal */ | |
1356 /* values into physical values */ | |
1357 /*------------------------------------------------------*/ | |
1358 | |
1359 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy) | |
1360 { | |
1361 WORD16 i; | |
1362 UWORD16 y; | |
1363 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1; | |
1364 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */ | |
1365 | |
1366 //store raw ADC values | |
1367 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw)); | |
1368 | |
1369 // Convert Vbat [mV] : direct equation with slope and offset compensation | |
1370 for (i = ADC_VBAT; i<ADC_RFTEMP; i++) | |
1371 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; | |
1372 | |
1373 /*Convert RF Temperature [Celsius]: binsearch into a table*/ | |
1374 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/ | |
1375 while((Smax-Smin) > 1 ) | |
1376 { | |
1377 if(y < temperature[index].adc) | |
1378 Smax=index; | |
1379 else | |
1380 Smin=index; | |
1381 | |
1382 index = (Smax+Smin)/2; | |
1383 } | |
1384 adc.converted[ADC_RFTEMP] = temperature[index].temp; | |
1385 | |
1386 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++) | |
1387 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; | |
1388 | |
1389 //store converted ADC values | |
1390 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw)); | |
1391 } | |
1392 | |
1393 | |
1394 /*------------------------------------------------------*/ | |
1395 /* get_cal_from_nvmem */ | |
1396 /*------------------------------------------------------*/ | |
1397 /* Parameters : */ | |
1398 /* Return : */ | |
1399 /* Functionality : Copy calibrated parameter to */ | |
1400 /* calibration structure in RAM */ | |
1401 /*------------------------------------------------------*/ | |
1402 | |
1403 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) | |
1404 { | |
1405 | |
1406 } | |
1407 | |
1408 /*------------------------------------------------------*/ | |
1409 /* save_cal_from_nvmem */ | |
1410 /*------------------------------------------------------*/ | |
1411 /* Parameters : */ | |
1412 /* Return : */ | |
1413 /* Functionality : Copy calibrated structure from RAM */ | |
1414 /* into NV memory */ | |
1415 /*------------------------------------------------------*/ | |
1416 | |
1417 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) | |
1418 { | |
1419 return (0); | |
1420 } | |
1421 | |
1422 #if (TRACE_TYPE == 4) | |
1423 | |
1424 /*------------------------------------------------------*/ | |
1425 /* l1_cst_l1_parameters */ | |
1426 /*------------------------------------------------------*/ | |
1427 /* Parameters : s: pointer on configuration string */ | |
1428 /* Return : nothing: global var are set */ | |
1429 /* Functionality : Set global L1 vars for dynamic trace */ | |
1430 /* and configuration */ | |
1431 /* */ | |
1432 /* This function is called when a CST message is sent */ | |
1433 /* from the Condat Panel. */ | |
1434 /*------------------------------------------------------*/ | |
1435 void l1_cst_l1_parameters(char *s) | |
1436 { | |
1437 /* | |
1438 a sample command string can be: | |
1439 L1_PARAMS=<1,2,3,4,5> or | |
1440 L1_PARAMS=<1,23,3E32,4,5> | |
1441 with n parameters (here: 5 params); n>=1 | |
1442 parameters are decoded as hexadecimal unsigned integers (UWORD16) | |
1443 */ | |
1444 | |
1445 UWORD8 uNParams = 0; /* Number of parameters */ | |
1446 UWORD32 aParam[10]; /* Parameters array */ | |
1447 UWORD8 uIndex = 0; | |
1448 | |
1449 /* *** retrieve all parameters *** */ | |
1450 while (s[uIndex] != '<') uIndex++; | |
1451 uIndex++; | |
1452 aParam[0] = 0; | |
1453 | |
1454 /* uIndex points on 1st parameter */ | |
1455 | |
1456 while (s[uIndex] != '>') | |
1457 { | |
1458 if (s[uIndex] == ',') | |
1459 { | |
1460 uNParams++; | |
1461 aParam[uNParams] = 0; | |
1462 } | |
1463 else | |
1464 { | |
1465 /* uIndex points on a parameter char */ | |
1466 UWORD8 uChar = s[uIndex]; | |
1467 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */ | |
1468 if ((uChar>='0') && (uChar<='9')) | |
1469 aParam[uNParams] += (uChar - '0'); /* retrieve value */ | |
1470 else if ((uChar>='A') && (uChar<='F')) | |
1471 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */ | |
1472 else if ((uChar>='a') && (uChar<='f')) | |
1473 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */ | |
1474 } | |
1475 | |
1476 uIndex++; /* go to next char */ | |
1477 } | |
1478 | |
1479 /* increment number of params */ | |
1480 uNParams++; | |
1481 | |
1482 /* *** handle parameters *** */ | |
1483 /* | |
1484 1st param: command type | |
1485 2nd param: argument for command type | |
1486 */ | |
1487 switch (aParam[0]) | |
1488 { | |
1489 case 0: /* Trace setting */ | |
1490 /* The 2nd parameter contains the trace bitmap*/ | |
1491 if (uNParams >=2) | |
1492 trace_info.current_config->l1_dyn_trace = aParam[1]; | |
1493 else | |
1494 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */ | |
1495 Trace_dyn_trace_change(); | |
1496 break; | |
1497 default: /* ignore it */ | |
1498 break; | |
1499 } // switch | |
1500 } | |
1501 | |
1502 #endif | |
1503 | |
1504 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \ | |
1505 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \ | |
1506 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \ | |
1507 (CHIPSET == 11) || (CHIPSET == 12)) | |
1508 /*-------------------------------------------------------*/ | |
1509 /* power_down_config() : temporary implementation !!! */ | |
1510 /*-------------------------------------------------------*/ | |
1511 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */ | |
1512 /* clocks to be cut in BIG sleep */ | |
1513 /* Return : */ | |
1514 /* Functionality : set the l1s variables */ | |
1515 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */ | |
1516 /* according to the desired mode. */ | |
1517 /*-------------------------------------------------------*/ | |
1518 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks) | |
1519 { | |
1520 #if (OP_L1_STANDALONE == 1) | |
1521 if(sleep_mode != NO_SLEEP) | |
1522 #endif | |
1523 { | |
1524 l1_config.pwr_mngt = PWR_MNGT; | |
1525 l1s.pw_mgr.mode_authorized = sleep_mode; | |
1526 l1s.pw_mgr.clocks = clocks; | |
1527 } | |
1528 | |
1529 #if (OP_L1_STANDALONE == 0) | |
1530 l1s.pw_mgr.enough_gaug = FALSE; | |
1531 #endif | |
1532 } | |
1533 #endif | |
1534 //added for L1 standalone DRP calibration- this will overwrite the previous data | |
1535 #if (OP_L1_STANDALONE == 1) | |
1536 #pragma DATA_SECTION(drp_l1_standalone_calib_data, ".drp_l1_standalone_calib_data"); | |
1537 T_DRP_SW_DATA drp_l1_standalone_calib_data; | |
1538 #pragma DATA_SECTION(valid_dro_standalone_calib_data_flag , ".valid_dro_standalone_calib_data_flag"); | |
1539 UWORD32 valid_dro_standalone_calib_data_flag; | |
1540 //const T_DRP_SW_DATA drp_sw_data_init = { (UINT16) sizeof(T_DRP_CALIB), } -this needs to be filled by CCS | |
1541 //added for L1 standalone DRP calibration- ends | |
1542 #endif | |
1543 // for DRP Calibration | |
1544 /*-------------------------------------------------------*/ | |
1545 /* Cust_init_params_drp() */ | |
1546 /*-------------------------------------------------------*/ | |
1547 /* Parameters : none */ | |
1548 /* Return : none */ | |
1549 /* Functionality : Intialization of DRP calibration. */ | |
1550 /*-------------------------------------------------------*/ | |
1551 #if (L1_DRP == 1) | |
1552 void Cust_init_params_drp(void) | |
1553 { | |
1554 #if (DRP_FW_EXT==1) | |
1555 l1s.boot_result=drp_sw_data_calib_upload_from_ffs(&drp_sw_data_calib); | |
1556 drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); | |
1557 #else // DRP_FW_EXT==0 | |
1558 volatile UINT16 indx, strsize; | |
1559 volatile UINT8 *ptrsrc, *ptrdst; | |
1560 | |
1561 #if (OP_L1_STANDALONE == 0) | |
1562 if(drp_sw_data_calib.length != drp_sw_data_init.length) | |
1563 { | |
1564 #endif | |
1565 | |
1566 // For the 1st time FFS might have garbage, if so use the above as check to ensure | |
1567 //and copy from the .drp_sw_data_init structure. | |
1568 | |
1569 // Copy drp_sw_data_init into drp_sw_data_calib | |
1570 strsize = sizeof(T_DRP_SW_DATA); | |
1571 ptrsrc = (UINT8 *)(&drp_sw_data_init); | |
1572 ptrdst = (UINT8 *)(&drp_sw_data_calib); | |
1573 | |
1574 for(indx=0;indx < strsize;indx++) | |
1575 *ptrdst++ = *ptrsrc++; | |
1576 | |
1577 #if (OP_L1_STANDALONE == 0) | |
1578 } | |
1579 #endif | |
1580 | |
1581 drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); | |
1582 | |
1583 //added for L1 standalone DRP calibration- this will overwrite the previous data | |
1584 #if (OP_L1_STANDALONE == 1) | |
1585 if(valid_dro_standalone_calib_data_flag == 0xDEADBEAF ) //indicates down the data via CCS | |
1586 drp_copy_sw_data_to_drpsrm(&drp_l1_standalone_calib_data); | |
1587 #endif | |
1588 //added for L1 standalone DRP calibration- ends | |
1589 #endif // DRP_FW_EXT | |
1590 } | |
1591 #endif | |
1592 | |
1593 | |
1594 #if (DRP_FW_EXT==1) | |
1595 void l1_get_boot_result_and_version(T_L1_BOOT_VERSION_CODE * p_version) | |
1596 { | |
1597 if(! p_version) | |
1598 { | |
1599 return; | |
1600 } | |
1601 p_version->dsp_code_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number1; | |
1602 p_version->dsp_patch_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number2; | |
1603 p_version->mcu_tcs_program_release = PROGRAM_RELEASE_VERSION; | |
1604 p_version->mcu_tcs_internal = INTERNAL_VERSION; | |
1605 p_version->mcu_tcs_official = OFFICIAL_VERSION; | |
1606 | |
1607 p_version->drp_maj_ver = drp_ref_sw_ver; | |
1608 p_version->drp_min_ver = drp_ref_sw_tag; | |
1609 | |
1610 p_version->boot_result = l1s.boot_result; | |
1611 } | |
1612 #endif /* DRP_FW_EXT */ | |
1613 | |
1614 | |
1615 | |
1616 |