FreeCalypso > hg > freecalypso-sw
diff gsm-fw/L1/cust1/l1_cust.c @ 517:eafadfee35b2
gsm-fw/L1/cust?: imported Leonardo, LoCosto and MV100 versions
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Thu, 10 Jul 2014 03:43:04 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gsm-fw/L1/cust1/l1_cust.c Thu Jul 10 03:43:04 2014 +0000 @@ -0,0 +1,1616 @@ +/************* Revision Controle System Header ************* + * GSM Layer 1 software + * L1_CUST.C + * + * Filename l1_cust.c + * Copyright 2003 (C) Texas Instruments + * + ************* Revision Controle System Header *************/ + +//#define GLOBAL + +#include "l1sw.cfg" +#include "l1_types.h" + +#include "string.h" +#include "l1_confg.h" +#include "l1_const.h" +#include "ulpd.h" +#include "tm_defs.h" +#include "l1_types.h" +#include "l1_time.h" +#include "l1_trace.h" +#include "sys_types.h" +#include "l1_macro.h" +#if (OP_L1_STANDALONE == 1) + #include "serialswitch_core.h" +#else + #include "uart/serialswitch.h" +#endif + +#include "abb.h" + +#if(OP_L1_STANDALONE == 0) + #include "buzzer/buzzer.h" // for BZ_KeyBeep_OFF function + #include "sim/sim.h" +#endif + +#if TESTMODE + #include "l1tm_defty.h" +#endif + +#if (AUDIO_TASK == 1) + #include "l1audio_const.h" + #include "l1audio_cust.h" + #include "l1audio_defty.h" +#endif + +#if (L1_GTT == 1) + #include "l1gtt_const.h" + #include "l1gtt_defty.h" +#endif + +#if (L1_MP3 == 1) + #include "l1mp3_defty.h" +#endif + +#if (L1_MIDI == 1) + #include "l1midi_defty.h" +#endif + +#include "l1_defty.h" +#include "l1_msgty.h" +#include "l1_tabs.h" +#include "l1_varex.h" +#include "l1_proto.h" +#if (VCXO_ALGO == 1) + #include "l1_ctl.h" +#endif + + +#if (RF_FAM == 61) + #include "drp_drive.h" + #include "tpudrv61.h" + #include "l1_rf61.h" + #include "l1_rf61.c" +#endif + + +#if (RF_FAM == 60 ) +#include "drp_drive.h" + #include "tpudrv60.h" + #include "l1_rf60.h" + #include "l1_rf60.c" + //#include "rf60.h" +#endif + +#if (RF_FAM == 43) + #include "tpudrv43.h" + #include "l1_rf43.h" + #include "l1_rf43.c" +#endif + +#if (RF_FAM == 35) + #include "tpudrv35.h" + #include "l1_rf35.h" + #include "l1_rf35.c" +#endif + +#if (RF_FAM == 12) + #include "tpudrv12.h" + #include "l1_rf12.h" + #include "l1_rf12.c" +#endif + +#if (RF_FAM == 10) + #include "tpudrv10.h" + #include "l1_rf10.h" + #include "l1_rf10.c" +#endif + +#if (RF_FAM == 8) + #include "tpudrv8.h" + #include "l1_rf8.h" + #include "l1_rf8.c" +#endif + +#if (RF_FAM == 2) + #include "l1_rf2.h" + #include "l1_rf2.c" +#endif + +#if (DRP_FW_EXT == 1) +#include "l1_drp_inc.h" +#include "l1_ver.h" +#endif + + +// Nucleus functions +extern INT TMD_Timer_State; +extern UWORD32 TMD_Timer; // for big sleep +extern UWORD32 TCD_Priority_Groups; +extern VOID *TCD_Current_Thread; +extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES]; +extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES]; +extern TC_PROTECT TCD_System_Protect; + +#if (L2_L3_SIMUL == 0) + #define FFS_WORKAROUND 0 +#else + #define FFS_WORKAROUND 0 +#endif + #if (FFS_WORKAROUND == 1) + #include "ffs/ffs.h" + #else +/* typedef signed int int32; + typedef signed char effs_t;*/ + typedef signed int filesize_t; + effs_t ffs_fwrite(const char *name, void *addr, filesize_t size); +#if (DRP_FW_EXT == 0) + effs_t ffs_fread(const char *name, void *addr, filesize_t size); + #endif + #endif + +// Import band configuration from Flash module (need to replace by an access function) +//extern UWORD8 std; +extern T_L1_CONFIG l1_config; +extern T_L1S_GLOBAL l1s; + +#if(OP_L1_STANDALONE == 0) + extern SYS_BOOL cama_sleep_status(void); +#endif + +#if (CODE_VERSION != SIMULATION) + // Import serial switch configuration + #if (CHIPSET == 12) + extern char ser_cfg_info[3]; + #else + extern char ser_cfg_info[2]; + #endif +#endif + +#if(REL99 && FF_PRF) +T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, + UWORD8 number_uplink_timeslot, + T_TX_LEVEL *p_tx_level); +#endif + + +void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); +UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); +void config_rf_rw_band(char type, UWORD8 read); +void config_rf_read(char type); +void config_rf_write(char type); + +#if (RF_FAM == 61) +#include "drp_api.h" + + +extern T_DRP_SW_DATA drp_sw_data_init; +extern T_DRP_SW_DATA drp_sw_data_calib; +extern T_DRP_SW_DATA drp_sw_data_calib_saved; +#endif + +enum { + RF_ID = 0, + ADC_ID = 1 +}; + +#if (L1_FF_MULTIBAND == 0) +/*-------------------------------------------------------*/ +/* Parameters: none */ +/* Return: none */ +/* Functionality: Defines the location of rf-struct */ +/* for each std. */ +/*-------------------------------------------------------*/ +//omaps00090550 #83 warinng removal +static const T_BAND_CONFIG band_config[] = +{ /*ffs name, default addr, max carrier, min tx pwr */ + {"",(T_RF_BAND *) 0,0,0},//undefined + {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM + {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS + {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS + {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850 +#if (RF_FAM == 10) + {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment +#endif + {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry +}; + +/*-------------------------------------------------------*/ +/* Parameters: none */ +/* Return: none */ +/* Functionality: Defines the indices into band_config */ +/* for each std. */ +/*-------------------------------------------------------*/ +const T_STD_CONFIG std_config[] = +{ + /* band1 index, band2 index, txpwr turning point, first arfcn*/ + { 0, 0, 0, 0 }, // std = 0 not used + { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM + { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM + { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS + { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS + { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL + { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT + { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850 +#if (RF_FAM == 10) + { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900 +#else + { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900 +#endif +}; +#endif //if (L1_FF_MULTIBAND == 0) + +/*-------------------------------------------------------*/ +/* Prototypes of external functions used in this file. */ +/*-------------------------------------------------------*/ +void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config); +#if (L1_FF_MULTIBAND == 0) +WORD16 Convert_l1_radio_freq (UWORD16 radio_freq); +#endif +/*-------------------------------------------------------*/ +/* Cust_recover_Os() */ +/*-------------------------------------------------------*/ +/* */ +/* Description: adjust OS from sleep duration */ +/* ------------ */ +/* This function fix the : */ +/* - system clock */ +/* - Nucleus timers */ +/* - xxxxxx (customer dependant) */ +/*-------------------------------------------------------*/ + +UWORD8 Cust_recover_Os(void) +{ +#if (CODE_VERSION != SIMULATION) + if (l1_config.pwr_mngt == PWR_MNGT) + { + UWORD32 current_system_clock; + + /***************************************************/ + // Fix System clock and Nucleus Timers if any.... */ + /***************************************************/ + // Fix System clock .... + current_system_clock = NU_Retrieve_Clock(); + current_system_clock += l1s.pw_mgr.sleep_duration; + NU_Set_Clock(current_system_clock); + + // Fix Nucleus timer (if needed) .... + if (TMD_Timer_State == TM_ACTIVE) + { + TMD_Timer -= l1s.pw_mgr.sleep_duration; + if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED; + } + + /***************************************************/ + // Cust dependant part ... */ + /***************************************************/ + //............. + //............. + //.............. + return(TRUE); + + } +#endif + return(TRUE); //omaps00090550 +} + + + +/*-------------------------------------------------------*/ +/* Cust_check_system() */ +/*-------------------------------------------------------*/ +/* */ +/* Description: */ +/* ------------ */ +/* GSM 1.5 : */ +/* - authorize UWIRE clock to be stopped */ +/* and write value in l1s.pw_mgr.modules_status. */ +/* - authorize ARMIO clock to be stopped if the light is */ +/* off and write value in l1s.pw_mgr.modules_status. */ +/* - check if SIM clock have been stopped */ +/* before allowing DEEP SLEEP. */ +/* - check if UARTs are ready to enter deep sleep */ +/* - choose the sleep mode */ +/* */ +/* Return: */ +/* ------- */ +/* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */ +/*-------------------------------------------------------*/ +UWORD8 Cust_check_system(void) +{ + +#if (CODE_VERSION != SIMULATION) + if (l1_config.pwr_mngt == PWR_MNGT) + { + +#if (L2_L3_SIMUL == 0) + // Forbid deep sleep if the light is on + if(LT_Status()) + { + //cut ARMIO and UWIRE clocks in big sleep + l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; + l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON; + return(FRAME_STOP); // BIG sleep + } + + #if (OP_L1_STANDALONE == 0) + // Forbid deep sleep if the camera is working + if(!cama_sleep_status()) + { + l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA; + return(FRAME_STOP); // BIG sleep + } + +// Forbid deep sleep if the SIM and UARTs not ready +#if (REQUIRED_FOR_ESAMPLE_LOCOSTO) + // Forbid deep sleep if the SIM and UARTs not ready + if(SIM_SleepStatus()) +#endif + { + #endif +#endif + if(SER_UartSleepStatus()) + { + return(CLOCK_STOP); // DEEP sleep + } + else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART; +#if (L2_L3_SIMUL == 0) + #if (OP_L1_STANDALONE == 0) + } +// Forbid deep sleep if the SIM and UARTs not ready +#if (REQUIRED_FOR_ESAMPLE_LOCOSTO) + else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM; +#endif + #endif +#endif + // cut ARMIO and UWIRE clocks in big sleep + l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; + return(FRAME_STOP); // BIG sleep + } +#else // Simulation part + return(CLOCK_STOP); // DEEP sleep +#endif +return(CLOCK_STOP); // omaps00090550 +} + + +/*-------------------------------------------------------*/ +/* Parameters: none */ +/* Return: none */ +/* Functionality: Read the RF configuration, tables etc. */ +/* from FFS files. */ +/*-------------------------------------------------------*/ +//omaps00090550 #83-d warnimg removal +static const T_CONFIG_FILE config_files_common[] = +{ +#if (CODE_VERSION != SIMULATION) + + // The first char is NOT part of the filename. It is used for + // categorizing the ffs file contents: + // f=rf-cal, F=rf-config, + // t=tx-cal, T=tx-config, + // r=rx-cal, R=rx-config, + // s=sys-cal, S=sys-config, + "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc), + "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support), +#if (VCXO_ALGO == 1) + "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16), +#else + "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32), +#endif + + "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16), + "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr), + "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE), + + "s/sys/adccal", &adc_cal, sizeof(adc_cal), + + "S/sys/abb", &abb, sizeof(abb), + "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info), + + #if (RF_FAM ==61) + "S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper), + #if (DRP_FW_EXT == 0) + "S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib), + #endif + #endif + +#endif + NULL, 0, 0 // terminator + }; + +/*-------------------------------------------------------*/ +/* Parameters: none */ +/* Return: none */ +/* Functionality: Read the RF configurations for */ +/* each band from FFS files. These files */ +/* are defined for one band, and and used */ +/* for all bands. */ +/*-------------------------------------------------------*/ +//omaps00090550 #83 warning removal +static const T_CONFIG_FILE config_files_band[] = +{ + // The first char is NOT part of the filename. It is used for + // categorizing the ffs file contents: + // f=rf-cal, F=rf-config, + // t=tx-cal, T=tx-config, + // r=rx-cal, R=rx-config, + // s=sys-cal, S=sys-config, + + // generic for all bands + // band[0] is used as template for all bands. + "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables), + "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels), + "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table), + "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp), + + "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands), + "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp), + "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params), + NULL, 0, 0 // terminator +}; + +void config_ffs_read(char type) +{ + config_rf_read(type); + config_rf_rw_band(type, 1); +} + +void config_ffs_write(char type) +{ + config_rf_write(type); + config_rf_rw_band(type, 0); +} + +void config_rf_read(char type) +{ + const T_CONFIG_FILE *file = config_files_common; + + while (file->name != NULL) + { + if (type == '*' || type == file->name[0]) { + ffs_fread(&file->name[1], file->addr, file->size); + } + file++; + } +} + +void config_rf_write(char type) +{ + const T_CONFIG_FILE *file = config_files_common; + + while (file->name != NULL) + { + if (type == '*' || type == file->name[0]) { + ffs_fwrite(&file->name[1], file->addr, file->size); + } + file++; + } +} + +void config_rf_rw_band(char type, UWORD8 read) +{ + const T_CONFIG_FILE *f1 = config_files_band; + UWORD8 i; + WORD32 offset; + char name[64]; + char *p; +#if (L1_FF_MULTIBAND == 0) + UWORD8 std = l1_config.std.id; +#endif + +#if FFS_WORKAROUND == 1 + struct stat_s stat; + UWORD16 time; +#endif + #if (L1_FF_MULTIBAND == 0) + for (i=0; i< GSM_BANDS; i++) + { + if(std_config[std].band[i] !=0 ) + { +#else + for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) + { +#endif /*if (L1_FF_MULTIBAND == 0) */ + f1 = &config_files_band[0]; + while (f1->name != NULL) + { + offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes + p = ((char *) &rf_band[i]) + offset; + if (type == '*' || type == f1->name[0]) + { + strcpy(name, &f1->name[1]); + strcat(name, "."); +#if (L1_FF_MULTIBAND == 0) + strcat(name, band_config[std_config[std].band[i]].name); +#else + strcat(name, multiband_rf[i].name); +#endif /*if (L1_FF_MULTIBAND == 0)*/ + + if (read == 1) + ffs_fread(name, p, f1->size); + else //write == 0 + { + ffs_fwrite(name, p, f1->size); + + // wait until ffs write has finished +#if FFS_WORKAROUND == 1 + stat.inode = 0; + time = 0; + + do { + rvf_delay(10); // in milliseconds + time += 10; + ffs_stat(name, &stat); + } while (stat.inode == 0 && time < 500); +#endif + } + } + f1++; + } + } + #if (L1_FF_MULTIBAND == 0) +} +#endif +} + + +/*-------------------------------------------------------*/ +/* Cust_init_std() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : Init Standard variable configuration */ +/*-------------------------------------------------------*/ +void Cust_init_std(void) +#if (L1_FF_MULTIBAND == 0) +{ + UWORD8 std = l1_config.std.id; + UWORD8 band1, band2; + T_RF_BAND *pt1, *pt2; + + band1 = std_config[std].band[0]; + band2 = std_config[std].band[1]; + + //get these from std + pt1 = band_config[band1].addr; + pt2 = band_config[band2].addr; + + // copy rf-struct from default flash to ram + memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND)); + + if(std_config[std].band[1] != BAND_NONE ) + memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND)); + + // Read all RF and system configuration from FFS *before* we copy any of + // the rf structure variables to other places, like L1. + + config_ffs_read('*'); + + l1_config.std.first_radio_freq = std_config[std].first_arfcn; + + if(band2!=0) + l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1; + else + l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0 + + // if band2 is not used it is initialised with zeros + l1_config.std.nbmax_carrier = band_config[band1].max_carrier; + if(band2!=0) + l1_config.std.nbmax_carrier += band_config[band2].max_carrier; + + l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr; + l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr; + l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp; + l1_config.std.cal_freq1_band1 = 0; + l1_config.std.cal_freq1_band2 = 0; + + l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic; + l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att; + l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low; + l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high; + l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq; + + l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic; + l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att; + l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low; + l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high; + l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq; + + l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1; + + // init variable indicating which radio bands are supported by the chosen RF + l1_config.std.radio_band_support = rf.radio_band_support; + + //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration + // on a need basis ? +} +#else +{ + UWORD8 i; + + for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) + { + switch(multiband_rf[i].gsm_band_identifier) + { + case RF_GSM900: + rf_band[i]=rf_900; + break; + case RF_GSM850: + rf_band[i]=rf_850; + break; + case RF_DCS1800: + rf_band[i]=rf_1800; + break; + case RF_PCS1900: + rf_band[i]=rf_1900; + break; + default: + break; + } + } + config_ffs_read('*'); +} +#endif // if (L1_FF_MULTIBAND == 0) + + +/*-------------------------------------------------------*/ +/* Cust_init_params() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : Init RF dependent paramters (AGC, TX) */ +/*-------------------------------------------------------*/ +void Cust_init_params(void) +{ + +#if (CODE_VERSION==SIMULATION) + extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file + extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file + + l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME; + l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME; +#else + l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME; + l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME; +#endif + + + // Convert SYNTH_SETUP_TIME into SPLIT. + // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin. + l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); + l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); + + l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time; + l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time; + + l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC; + l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS; + + l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - + TA_MAX - + l1_config.params.tx_synth_setup_time - + EPSILON_OFFS; + + // TX duration = ramp up time + burst duration (data + tail bits) + l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL; + l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION; + + l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); + l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); + + // time for the end of RX and TX TPU scenarios + l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING; + l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; + + // FB26 anchoring time is computed backward to leave only 6 qbit margin between + // FB26 window and next activity (RX time tracking). + // This margin is used as follow: + // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD) + // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD) + // --------- + // Total: 3 qbit + + l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - + #if (CODE_VERSION == SIMULATION) + // simulator: end of scenario not included in window (no serialization) + 1 - + #else + // RF dependent end of RX TPU scenario + l1_config.params.rx_tpu_scenario_ending - + #endif + EPSILON_SYNC - + TPU_SLEEP_LOAD - + SERV_OFFS_REST_LOAD - + FB26_ACQUIS_DURATION - + PROVISION_TIME + + TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE; + + l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time + + PROVISION_TIME - + l1_config.params.rx_synth_setup_time - + EPSILON_OFFS; + + l1_config.params.guard_bits = rf.tx.guard_bits; + + l1_config.params.prg_tx_gsm = rf.tx.prg_tx; + l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet + + l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; + l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; + l1_config.params.low_agc = rf.rx.agc.low_agc; + l1_config.params.high_agc = rf.rx.agc.high_agc; + l1_config.params.il_min = IL_MIN; + + l1_config.params.fixed_txpwr = FIXED_TXPWR; + l1_config.params.eeprom_afc = rf.afc.eeprom_afc; + l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF; + l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation + + l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; + l1_config.params.psi_st = rf.afc.psi_st; + l1_config.params.psi_st_32 = rf.afc.psi_st_32; + l1_config.params.psi_st_inv = rf.afc.psi_st_inv; + + #if (CODE_VERSION == SIMULATION) + #if (VCXO_ALGO == 1) + l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm + #endif + #else + #if (VCXO_ALGO == 1) + l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity + l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity + l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity +#if (NEW_SNR_THRESHOLD == 0) + l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold +#else + l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD; +#endif /* NEW_SNR_THRESHOLD */ + l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm + l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value + l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm + l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count + #endif + #endif + + #if DCO_ALGO + #if (RF_FAM == 10) + // Enable DCO algorithm for direct conversion RFs + l1_config.params.dco_enabled = TRUE; + #else + l1_config.params.dco_enabled = FALSE; + #endif + #endif + + #if (ANLG_FAM == 1) + l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG + l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset + l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute + l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB + l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset + l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset + l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset + l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset + l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset + l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset + l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 + l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset + #endif + #if (ANLG_FAM == 2) + l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG + l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset + l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute + l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB + l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset + l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset + l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset + l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset + l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset + l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset + l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset + l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 + l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 + l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset + l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset + #endif + #if (ANLG_FAM == 3) + l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG + l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset + l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute + l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB + l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset + l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset + l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled + l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset + l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset + l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset + l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset + l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0 + l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 + l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset + l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset + l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled + l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON" + l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset + l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR + l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset + l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset +#endif + + #if (RF_FAM == 61) + l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2]; + l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1]; + l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2]; + #endif + #if (ANLG_FAM == 11) + l1_config.params.vulgain = abb[ABB_VULGAIN]; + l1_config.params.vdlgain = abb[ABB_VDLGAIN]; + l1_config.params.sidetone = abb[ABB_SIDETONE]; + l1_config.params.ctrl1 = abb[ABB_CTRL1]; + l1_config.params.ctrl2 = abb[ABB_CTRL2]; + l1_config.params.ctrl3 = abb[ABB_CTRL3]; + l1_config.params.ctrl4 = abb[ABB_CTRL4]; + l1_config.params.ctrl5 = abb[ABB_CTRL5]; + l1_config.params.ctrl6 = abb[ABB_CTRL6]; + l1_config.params.popauto = abb[ABB_POPAUTO]; + l1_config.params.outen1 = abb[ABB_OUTEN1]; + l1_config.params.outen2 = abb[ABB_OUTEN2]; + l1_config.params.outen3 = abb[ABB_OUTEN3]; + l1_config.params.aulga = abb[ABB_AULGA]; + l1_config.params.aurga = abb[ABB_AURGA]; + #endif +} + + +/************************************/ +/* Automatic Gain Control */ +/************************************/ + +/*-------------------------------------------------------*/ +/* Cust_get_agc_from_IL() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : returns agc value */ +/*-------------------------------------------------------*/ +WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val) +{ + + UWORD16 agc_index_temp; + +// radio_freq currently not used +// this parameter is passed in order to allow band dependent tables for specific RFs +// (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS) + + agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq)); + agc_index= agc_index_temp>>1; + if (agc_index > 120) + agc_index = 120; // Clip agc_index + + switch (table_id) + { + case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]); + case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]); + case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]); + } + return (0);//omaps00090550 +} + +/*-------------------------------------------------------*/ +/* Cust_get_agc_band */ +/*-------------------------------------------------------*/ +/* Parameters : radio_freq */ +/* Return : band number */ +/* Functionality : Computes the band for RF calibration */ +/*-------------------------------------------------------*/ +/*---------------------------------------------*/ + + UWORD8 band_number; + #if (CODE_VERSION == SIMULATION) + UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) + #else + UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) + #endif + { +// WORD32 i =0 ; //omaps00090550 + + for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++) + { + if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound) + return(band_number); + } + // Should never happen! + return(0); + } + +#if (L1_FF_MULTIBAND == 0) +/*-------------------------------------------------------*/ +/* Cust_is_band_high */ +/*-------------------------------------------------------*/ +/* Parameters : arfcn */ +/* Return : 0 if low band */ +/* 1 if high band */ +/* Functionality : Generic function which return 1 if */ +/* arfcn is in the high band */ +/*-------------------------------------------------------*/ + +UWORD8 Cust_is_band_high(UWORD16 radio_freq) +{ + UWORD16 max_carrier; + UWORD8 std = l1_config.std.id; + + max_carrier = band_config[std_config[std].band[0]].max_carrier; + + return(((radio_freq >= l1_config.std.first_radio_freq) && + (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2); +} +#endif + +/*-------------------------------------------------------*/ +/* l1ctl_encode_delta2() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +WORD8 l1ctl_encode_delta2(UWORD16 radio_freq) +{ + WORD8 delta2_freq; + UWORD16 i; + UWORD16 arfcn; +#if (L1_FF_MULTIBAND == 0) + UWORD8 band; + + band = Cust_is_band_high(radio_freq); + arfcn = Convert_l1_radio_freq(radio_freq); +#else + WORD8 band; + // Corrected for input being rf_freq and not l1_freq + arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); +#endif + + i = Cust_get_agc_band(arfcn,band); // + delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib; + + //temperature compensation + for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++) + { + if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature) + { + delta2_freq += rf_band[band].rx.temp[i].agc_calib; + break; + } + } + + return(delta2_freq); +} + +#if (L1_FF_MULTIBAND == 0) +#else +/*-------------------------------------------------------*/ +/* l1ctl_get_g_magic() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) +{ + // Corrected for input being rf_freq and not l1_freq + return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic); +} + + +/*-------------------------------------------------------*/ +/* l1ctl_get_lna_att() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) +{ +// The function is provided with rf_freq as input so +// convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band + return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att); +// return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att); +} +/*-------------------------------------------------------*/ +/* l1ctl_encode_delta1() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) +{ + return 0; +} +/*-------------------------------------------------------*/ +/* l1ctl_encode_lna() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +void l1ctl_encode_lna( UWORD8 input_level, + UWORD8 *lna_state, + UWORD16 radio_freq) +{ + + /*** LNA Hysteresis is implemented as following : + + | + On|---<>----+-------+ + | | | + LNA | | | + | ^ v + | | | + | | | + Off| +-------+----<>----- + +-------------------------------- + 50 40 30 20 input_level /-dBm + THR_HIGH THR_LOW ***/ + WORD8 band; + // Corrected for input to be rf_freq and not l1_freq + band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]; + if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ? + { + *lna_state = LNA_ON; // lna_off = FALSE + } + else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ? + { + *lna_state = LNA_OFF; // lna off = TRUE + } +} + +UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq) +{ + return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq); +} + +#endif //if L1_FF_MULTIBAND == 0) + +/************************************/ +/* TX Management */ +/************************************/ +/*-------------------------------------------------------*/ +/* Cust_get_ramp_tab */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : + Notes: +Cal+ +APCRAM : Dwn(15:11)Up(10:6)Forced(0) +Locosto: +APCRAM: Dwn(15:8)Up(7:0) + +*/ +/*-------------------------------------------------------*/ + +void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq) +{ + UWORD16 index_up, index_down,j, arfcn; +#if (L1_FF_MULTIBAND == 0) + UWORD8 band; + + band = Cust_is_band_high(radio_freq); + arfcn = Convert_l1_radio_freq(radio_freq); +#else + WORD8 band; + // Corrected for input being rf_freq and not l1_freq + arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); +#endif //if( L1_FF_MULTIBAND == 0) + + index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index; + index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index; + + #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) + for (j=0; j<16; j++) + { + a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) | + ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) | + 0x14; + } + #endif + + #if (RF_FAM == 61) + // 20 Coeff each 8 (RampDown) + 8 (RampUp) + for (j=0; j<20; j++) + { + a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) | + ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ; + } + #endif +} + +/*-------------------------------------------------------*/ +/* get_pwr_data */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ + +#if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) +UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq + #if (REL99 && FF_PRF) + , UWORD8 number_uplink_timeslot + #endif + ) +{ + + UWORD16 i,j; + UWORD16 arfcn; + + T_TX_LEVEL *a_tx_levels; + + #if (APC_VBAT_COMP == 1) + static UWORD16 apc_max_value = APC_MAX_VALUE; + #endif + +#if(ORDER2_TX_TEMP_CAL==1) + WORD16 pwr_data; +#else + UWORD16 pwr_data; +#endif + +#if (L1_FF_MULTIBAND == 0) + UWORD8 band; + band = Cust_is_band_high(radio_freq); + arfcn = Convert_l1_radio_freq(radio_freq); +#else + WORD8 band; + // Corrected for input being rf_freq and not l1_freq + arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); +#endif //if( L1_FF_MULTIBAND == 0) + +// band = Cust_is_band_high(radio_freq); +// arfcn = Convert_l1_radio_freq(radio_freq); + + a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure + + #if REL99 + #if FF_PRF + // uplink power reduction feature which decrease power level in case of uplink multislot + a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels); + #endif + #endif + +// get uncalibrated apc + pwr_data = a_tx_levels->apc; + + i = a_tx_levels->chan_cal_index; // get index for channel compensation + j=0; + + while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit) + j++; + + // channel calibrate apc + pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; + + // temperature compensate apc + { + T_TX_TEMP_CAL *pt; + + pt = rf_band[band].tx.temp; + while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1))) + pt++; +#if(ORDER2_TX_TEMP_CAL==1) + pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c + if(pwr_data < 0) pwr_data = 0; +#else + pwr_data += pt->apc_calib; +#endif + } + + // Vbat compensate apc + #if (APC_VBAT_COMP == 1) + + if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD) + apc_max_value = APC_MAX_VALUE_LOW_BAT; + + else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD) + apc_max_value = APC_MAX_VALUE; + + // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and + // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one + + if (pwr_data > apc_max_value) + pwr_data = apc_max_value; + #endif // APC_VBAT_COMP == 1 + + return(pwr_data); +} +#endif + + +#if(REL99 && FF_PRF) + +/*-------------------------------------------------------*/ +/* Cust_get_uplink_apc_power_reduction */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* - frenquency band */ +/* - modulation type */ +/* - number of uplink timeslot */ +/* - pointer to radio power control structure */ +/* Return : */ +/* - pointer to radio power control structure */ +/* */ +/* Functionality : This function returns a pointer to */ +/* the radio power control structure after power */ +/* reduction processing. */ +/* Depending of the number of uplink timeslot, the */ +/* analogue power control (apc) value can be reduced */ +/* in order to limit effect of terminal heat */ +/* dissipation due to power amplifier. */ +/*-------------------------------------------------------*/ + +T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, + UWORD8 number_uplink_timeslot, + T_TX_LEVEL *p_tx_level) +{ + T_TX_LEVEL *p_power_reduction_tx_level; + + #if TESTMODE + if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE)) + return p_tx_level ; // return without any power reduction + #endif + + if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT)) + { + number_uplink_timeslot--; // index start from 0 + } + else + { + return p_tx_level; // abnormal case we do not apply any power reduction + } + + p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]); + + // We select the lowest power level in order to apply power reduction + #if (CODE_VERSION != SIMULATION) + if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power + #else + if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse + #endif + return p_power_reduction_tx_level; + else + return p_tx_level; +} + +#endif + +/*-------------------------------------------------------*/ +/* Cust_Init_Layer1 */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : Load and boot the DSP */ +/* Initialize shared memory and L1 data structures */ +/*-------------------------------------------------------*/ + +void Cust_Init_Layer1(void) +{ + T_MMI_L1_CONFIG cfg; + + // Get the current band configuration from the flash + #if (OP_WCP==1) && (OP_L1_STANDALONE!=1) + extern unsigned char ffs_GetBand(); + cfg.std = ffs_GetBand(); + #else // NO OP_WCP + // cfg.std = std; + cfg.std = STD; + #endif // OP_WCP + + cfg.tx_pwr_code = 1; + + // sleep management configuration + + #if(L1_POWER_MGT == 0) + cfg.pwr_mngt = 0; + cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode + cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep + #endif + #if(L1_POWER_MGT == 1) + cfg.pwr_mngt = 1; + cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode + cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep + #endif + + + + + + #if (CODE_VERSION != SIMULATION) + cfg.dwnld = DWNLD; //external define from makefile + #endif + + l1_initialize(&cfg); + + //add below line for CSR 174476 + trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init + + get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID); + get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID); + +} + + +/*****************************************************************************************/ +/*************************** TESTMODE functions **********************************/ +/*****************************************************************************************/ + + + + /*------------------------------------------------------*/ + /* madc_hex_2_physical */ + /*------------------------------------------------------*/ + /* Parameters : */ + /* Return : */ + /* Functionality : Function to convert MAD hexadecimal */ + /* values into physical values */ + /*------------------------------------------------------*/ + +void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy) +{ + WORD16 i; + UWORD16 y; + WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1; + WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */ + + //store raw ADC values + memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw)); + + // Convert Vbat [mV] : direct equation with slope and offset compensation + for (i = ADC_VBAT; i<ADC_RFTEMP; i++) + adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; + + /*Convert RF Temperature [Celsius]: binsearch into a table*/ + y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/ + while((Smax-Smin) > 1 ) + { + if(y < temperature[index].adc) + Smax=index; + else + Smin=index; + + index = (Smax+Smin)/2; + } + adc.converted[ADC_RFTEMP] = temperature[index].temp; + + for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++) + adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; + + //store converted ADC values + memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw)); +} + + + /*------------------------------------------------------*/ + /* get_cal_from_nvmem */ + /*------------------------------------------------------*/ + /* Parameters : */ + /* Return : */ + /* Functionality : Copy calibrated parameter to */ + /* calibration structure in RAM */ + /*------------------------------------------------------*/ + +void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) +{ + +} + + /*------------------------------------------------------*/ + /* save_cal_from_nvmem */ + /*------------------------------------------------------*/ + /* Parameters : */ + /* Return : */ + /* Functionality : Copy calibrated structure from RAM */ + /* into NV memory */ + /*------------------------------------------------------*/ + +UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) +{ + return (0); +} + +#if (TRACE_TYPE == 4) + +/*------------------------------------------------------*/ +/* l1_cst_l1_parameters */ +/*------------------------------------------------------*/ +/* Parameters : s: pointer on configuration string */ +/* Return : nothing: global var are set */ +/* Functionality : Set global L1 vars for dynamic trace */ +/* and configuration */ +/* */ +/* This function is called when a CST message is sent */ +/* from the Condat Panel. */ +/*------------------------------------------------------*/ +void l1_cst_l1_parameters(char *s) +{ + /* + a sample command string can be: + L1_PARAMS=<1,2,3,4,5> or + L1_PARAMS=<1,23,3E32,4,5> + with n parameters (here: 5 params); n>=1 + parameters are decoded as hexadecimal unsigned integers (UWORD16) + */ + + UWORD8 uNParams = 0; /* Number of parameters */ + UWORD32 aParam[10]; /* Parameters array */ + UWORD8 uIndex = 0; + + /* *** retrieve all parameters *** */ + while (s[uIndex] != '<') uIndex++; + uIndex++; + aParam[0] = 0; + + /* uIndex points on 1st parameter */ + + while (s[uIndex] != '>') + { + if (s[uIndex] == ',') + { + uNParams++; + aParam[uNParams] = 0; + } + else + { + /* uIndex points on a parameter char */ + UWORD8 uChar = s[uIndex]; + aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */ + if ((uChar>='0') && (uChar<='9')) + aParam[uNParams] += (uChar - '0'); /* retrieve value */ + else if ((uChar>='A') && (uChar<='F')) + aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */ + else if ((uChar>='a') && (uChar<='f')) + aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */ + } + + uIndex++; /* go to next char */ + } + + /* increment number of params */ + uNParams++; + + /* *** handle parameters *** */ + /* + 1st param: command type + 2nd param: argument for command type + */ + switch (aParam[0]) + { + case 0: /* Trace setting */ + /* The 2nd parameter contains the trace bitmap*/ + if (uNParams >=2) + trace_info.current_config->l1_dyn_trace = aParam[1]; + else + trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */ + Trace_dyn_trace_change(); + break; + default: /* ignore it */ + break; + } // switch +} + +#endif + +#if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \ + (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \ + (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \ + (CHIPSET == 11) || (CHIPSET == 12)) +/*-------------------------------------------------------*/ +/* power_down_config() : temporary implementation !!! */ +/*-------------------------------------------------------*/ +/* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */ +/* clocks to be cut in BIG sleep */ +/* Return : */ +/* Functionality : set the l1s variables */ +/* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */ +/* according to the desired mode. */ +/*-------------------------------------------------------*/ +void power_down_config(UWORD8 sleep_mode, UWORD16 clocks) +{ +#if (OP_L1_STANDALONE == 1) + if(sleep_mode != NO_SLEEP) +#endif + { + l1_config.pwr_mngt = PWR_MNGT; + l1s.pw_mgr.mode_authorized = sleep_mode; + l1s.pw_mgr.clocks = clocks; + } + +#if (OP_L1_STANDALONE == 0) + l1s.pw_mgr.enough_gaug = FALSE; +#endif +} +#endif + //added for L1 standalone DRP calibration- this will overwrite the previous data +#if (OP_L1_STANDALONE == 1) +#pragma DATA_SECTION(drp_l1_standalone_calib_data, ".drp_l1_standalone_calib_data"); +T_DRP_SW_DATA drp_l1_standalone_calib_data; +#pragma DATA_SECTION(valid_dro_standalone_calib_data_flag , ".valid_dro_standalone_calib_data_flag"); +UWORD32 valid_dro_standalone_calib_data_flag; +//const T_DRP_SW_DATA drp_sw_data_init = { (UINT16) sizeof(T_DRP_CALIB), } -this needs to be filled by CCS +//added for L1 standalone DRP calibration- ends +#endif +// for DRP Calibration +/*-------------------------------------------------------*/ +/* Cust_init_params_drp() */ +/*-------------------------------------------------------*/ +/* Parameters : none */ +/* Return : none */ +/* Functionality : Intialization of DRP calibration. */ +/*-------------------------------------------------------*/ +#if (L1_DRP == 1) + void Cust_init_params_drp(void) + { +#if (DRP_FW_EXT==1) + l1s.boot_result=drp_sw_data_calib_upload_from_ffs(&drp_sw_data_calib); + drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); +#else // DRP_FW_EXT==0 + volatile UINT16 indx, strsize; + volatile UINT8 *ptrsrc, *ptrdst; + +#if (OP_L1_STANDALONE == 0) + if(drp_sw_data_calib.length != drp_sw_data_init.length) + { +#endif + + // For the 1st time FFS might have garbage, if so use the above as check to ensure + //and copy from the .drp_sw_data_init structure. + + // Copy drp_sw_data_init into drp_sw_data_calib + strsize = sizeof(T_DRP_SW_DATA); + ptrsrc = (UINT8 *)(&drp_sw_data_init); + ptrdst = (UINT8 *)(&drp_sw_data_calib); + + for(indx=0;indx < strsize;indx++) + *ptrdst++ = *ptrsrc++; + +#if (OP_L1_STANDALONE == 0) + } +#endif + + drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); + +//added for L1 standalone DRP calibration- this will overwrite the previous data +#if (OP_L1_STANDALONE == 1) + if(valid_dro_standalone_calib_data_flag == 0xDEADBEAF ) //indicates down the data via CCS + drp_copy_sw_data_to_drpsrm(&drp_l1_standalone_calib_data); +#endif +//added for L1 standalone DRP calibration- ends +#endif // DRP_FW_EXT + } +#endif + + +#if (DRP_FW_EXT==1) +void l1_get_boot_result_and_version(T_L1_BOOT_VERSION_CODE * p_version) +{ + if(! p_version) + { + return; + } + p_version->dsp_code_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number1; + p_version->dsp_patch_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number2; + p_version->mcu_tcs_program_release = PROGRAM_RELEASE_VERSION; + p_version->mcu_tcs_internal = INTERNAL_VERSION; + p_version->mcu_tcs_official = OFFICIAL_VERSION; + + p_version->drp_maj_ver = drp_ref_sw_ver; + p_version->drp_min_ver = drp_ref_sw_tag; + + p_version->boot_result = l1s.boot_result; +} +#endif /* DRP_FW_EXT */ + + + +