FreeCalypso > hg > freecalypso-sw
view gsm-fw/L1/cust1/l1_cust.c @ 615:13e55e310eea
gsm-fw/L1/Makefile: stand added to SUBDIR for make clean
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Fri, 29 Aug 2014 18:41:55 +0000 |
parents | eafadfee35b2 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1_CUST.C * * Filename l1_cust.c * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ //#define GLOBAL #include "l1sw.cfg" #include "l1_types.h" #include "string.h" #include "l1_confg.h" #include "l1_const.h" #include "ulpd.h" #include "tm_defs.h" #include "l1_types.h" #include "l1_time.h" #include "l1_trace.h" #include "sys_types.h" #include "l1_macro.h" #if (OP_L1_STANDALONE == 1) #include "serialswitch_core.h" #else #include "uart/serialswitch.h" #endif #include "abb.h" #if(OP_L1_STANDALONE == 0) #include "buzzer/buzzer.h" // for BZ_KeyBeep_OFF function #include "sim/sim.h" #endif #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif #include "l1_defty.h" #include "l1_msgty.h" #include "l1_tabs.h" #include "l1_varex.h" #include "l1_proto.h" #if (VCXO_ALGO == 1) #include "l1_ctl.h" #endif #if (RF_FAM == 61) #include "drp_drive.h" #include "tpudrv61.h" #include "l1_rf61.h" #include "l1_rf61.c" #endif #if (RF_FAM == 60 ) #include "drp_drive.h" #include "tpudrv60.h" #include "l1_rf60.h" #include "l1_rf60.c" //#include "rf60.h" #endif #if (RF_FAM == 43) #include "tpudrv43.h" #include "l1_rf43.h" #include "l1_rf43.c" #endif #if (RF_FAM == 35) #include "tpudrv35.h" #include "l1_rf35.h" #include "l1_rf35.c" #endif #if (RF_FAM == 12) #include "tpudrv12.h" #include "l1_rf12.h" #include "l1_rf12.c" #endif #if (RF_FAM == 10) #include "tpudrv10.h" #include "l1_rf10.h" #include "l1_rf10.c" #endif #if (RF_FAM == 8) #include "tpudrv8.h" #include "l1_rf8.h" #include "l1_rf8.c" #endif #if (RF_FAM == 2) #include "l1_rf2.h" #include "l1_rf2.c" #endif #if (DRP_FW_EXT == 1) #include "l1_drp_inc.h" #include "l1_ver.h" #endif // Nucleus functions extern INT TMD_Timer_State; extern UWORD32 TMD_Timer; // for big sleep extern UWORD32 TCD_Priority_Groups; extern VOID *TCD_Current_Thread; extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES]; extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES]; extern TC_PROTECT TCD_System_Protect; #if (L2_L3_SIMUL == 0) #define FFS_WORKAROUND 0 #else #define FFS_WORKAROUND 0 #endif #if (FFS_WORKAROUND == 1) #include "ffs/ffs.h" #else /* typedef signed int int32; typedef signed char effs_t;*/ typedef signed int filesize_t; effs_t ffs_fwrite(const char *name, void *addr, filesize_t size); #if (DRP_FW_EXT == 0) effs_t ffs_fread(const char *name, void *addr, filesize_t size); #endif #endif // Import band configuration from Flash module (need to replace by an access function) //extern UWORD8 std; extern T_L1_CONFIG l1_config; extern T_L1S_GLOBAL l1s; #if(OP_L1_STANDALONE == 0) extern SYS_BOOL cama_sleep_status(void); #endif #if (CODE_VERSION != SIMULATION) // Import serial switch configuration #if (CHIPSET == 12) extern char ser_cfg_info[3]; #else extern char ser_cfg_info[2]; #endif #endif #if(REL99 && FF_PRF) T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, UWORD8 number_uplink_timeslot, T_TX_LEVEL *p_tx_level); #endif void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); void config_rf_rw_band(char type, UWORD8 read); void config_rf_read(char type); void config_rf_write(char type); #if (RF_FAM == 61) #include "drp_api.h" extern T_DRP_SW_DATA drp_sw_data_init; extern T_DRP_SW_DATA drp_sw_data_calib; extern T_DRP_SW_DATA drp_sw_data_calib_saved; #endif enum { RF_ID = 0, ADC_ID = 1 }; #if (L1_FF_MULTIBAND == 0) /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Defines the location of rf-struct */ /* for each std. */ /*-------------------------------------------------------*/ //omaps00090550 #83 warinng removal static const T_BAND_CONFIG band_config[] = { /*ffs name, default addr, max carrier, min tx pwr */ {"",(T_RF_BAND *) 0,0,0},//undefined {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850 #if (RF_FAM == 10) {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment #endif {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry }; /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Defines the indices into band_config */ /* for each std. */ /*-------------------------------------------------------*/ const T_STD_CONFIG std_config[] = { /* band1 index, band2 index, txpwr turning point, first arfcn*/ { 0, 0, 0, 0 }, // std = 0 not used { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850 #if (RF_FAM == 10) { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900 #else { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900 #endif }; #endif //if (L1_FF_MULTIBAND == 0) /*-------------------------------------------------------*/ /* Prototypes of external functions used in this file. */ /*-------------------------------------------------------*/ void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config); #if (L1_FF_MULTIBAND == 0) WORD16 Convert_l1_radio_freq (UWORD16 radio_freq); #endif /*-------------------------------------------------------*/ /* Cust_recover_Os() */ /*-------------------------------------------------------*/ /* */ /* Description: adjust OS from sleep duration */ /* ------------ */ /* This function fix the : */ /* - system clock */ /* - Nucleus timers */ /* - xxxxxx (customer dependant) */ /*-------------------------------------------------------*/ UWORD8 Cust_recover_Os(void) { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { UWORD32 current_system_clock; /***************************************************/ // Fix System clock and Nucleus Timers if any.... */ /***************************************************/ // Fix System clock .... current_system_clock = NU_Retrieve_Clock(); current_system_clock += l1s.pw_mgr.sleep_duration; NU_Set_Clock(current_system_clock); // Fix Nucleus timer (if needed) .... if (TMD_Timer_State == TM_ACTIVE) { TMD_Timer -= l1s.pw_mgr.sleep_duration; if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED; } /***************************************************/ // Cust dependant part ... */ /***************************************************/ //............. //............. //.............. return(TRUE); } #endif return(TRUE); //omaps00090550 } /*-------------------------------------------------------*/ /* Cust_check_system() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* GSM 1.5 : */ /* - authorize UWIRE clock to be stopped */ /* and write value in l1s.pw_mgr.modules_status. */ /* - authorize ARMIO clock to be stopped if the light is */ /* off and write value in l1s.pw_mgr.modules_status. */ /* - check if SIM clock have been stopped */ /* before allowing DEEP SLEEP. */ /* - check if UARTs are ready to enter deep sleep */ /* - choose the sleep mode */ /* */ /* Return: */ /* ------- */ /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */ /*-------------------------------------------------------*/ UWORD8 Cust_check_system(void) { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { #if (L2_L3_SIMUL == 0) // Forbid deep sleep if the light is on if(LT_Status()) { //cut ARMIO and UWIRE clocks in big sleep l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON; return(FRAME_STOP); // BIG sleep } #if (OP_L1_STANDALONE == 0) // Forbid deep sleep if the camera is working if(!cama_sleep_status()) { l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA; return(FRAME_STOP); // BIG sleep } // Forbid deep sleep if the SIM and UARTs not ready #if (REQUIRED_FOR_ESAMPLE_LOCOSTO) // Forbid deep sleep if the SIM and UARTs not ready if(SIM_SleepStatus()) #endif { #endif #endif if(SER_UartSleepStatus()) { return(CLOCK_STOP); // DEEP sleep } else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART; #if (L2_L3_SIMUL == 0) #if (OP_L1_STANDALONE == 0) } // Forbid deep sleep if the SIM and UARTs not ready #if (REQUIRED_FOR_ESAMPLE_LOCOSTO) else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM; #endif #endif #endif // cut ARMIO and UWIRE clocks in big sleep l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; return(FRAME_STOP); // BIG sleep } #else // Simulation part return(CLOCK_STOP); // DEEP sleep #endif return(CLOCK_STOP); // omaps00090550 } /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Read the RF configuration, tables etc. */ /* from FFS files. */ /*-------------------------------------------------------*/ //omaps00090550 #83-d warnimg removal static const T_CONFIG_FILE config_files_common[] = { #if (CODE_VERSION != SIMULATION) // The first char is NOT part of the filename. It is used for // categorizing the ffs file contents: // f=rf-cal, F=rf-config, // t=tx-cal, T=tx-config, // r=rx-cal, R=rx-config, // s=sys-cal, S=sys-config, "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc), "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support), #if (VCXO_ALGO == 1) "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16), #else "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32), #endif "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16), "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr), "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE), "s/sys/adccal", &adc_cal, sizeof(adc_cal), "S/sys/abb", &abb, sizeof(abb), "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info), #if (RF_FAM ==61) "S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper), #if (DRP_FW_EXT == 0) "S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib), #endif #endif #endif NULL, 0, 0 // terminator }; /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Read the RF configurations for */ /* each band from FFS files. These files */ /* are defined for one band, and and used */ /* for all bands. */ /*-------------------------------------------------------*/ //omaps00090550 #83 warning removal static const T_CONFIG_FILE config_files_band[] = { // The first char is NOT part of the filename. It is used for // categorizing the ffs file contents: // f=rf-cal, F=rf-config, // t=tx-cal, T=tx-config, // r=rx-cal, R=rx-config, // s=sys-cal, S=sys-config, // generic for all bands // band[0] is used as template for all bands. "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables), "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels), "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table), "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp), "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands), "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp), "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params), NULL, 0, 0 // terminator }; void config_ffs_read(char type) { config_rf_read(type); config_rf_rw_band(type, 1); } void config_ffs_write(char type) { config_rf_write(type); config_rf_rw_band(type, 0); } void config_rf_read(char type) { const T_CONFIG_FILE *file = config_files_common; while (file->name != NULL) { if (type == '*' || type == file->name[0]) { ffs_fread(&file->name[1], file->addr, file->size); } file++; } } void config_rf_write(char type) { const T_CONFIG_FILE *file = config_files_common; while (file->name != NULL) { if (type == '*' || type == file->name[0]) { ffs_fwrite(&file->name[1], file->addr, file->size); } file++; } } void config_rf_rw_band(char type, UWORD8 read) { const T_CONFIG_FILE *f1 = config_files_band; UWORD8 i; WORD32 offset; char name[64]; char *p; #if (L1_FF_MULTIBAND == 0) UWORD8 std = l1_config.std.id; #endif #if FFS_WORKAROUND == 1 struct stat_s stat; UWORD16 time; #endif #if (L1_FF_MULTIBAND == 0) for (i=0; i< GSM_BANDS; i++) { if(std_config[std].band[i] !=0 ) { #else for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) { #endif /*if (L1_FF_MULTIBAND == 0) */ f1 = &config_files_band[0]; while (f1->name != NULL) { offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes p = ((char *) &rf_band[i]) + offset; if (type == '*' || type == f1->name[0]) { strcpy(name, &f1->name[1]); strcat(name, "."); #if (L1_FF_MULTIBAND == 0) strcat(name, band_config[std_config[std].band[i]].name); #else strcat(name, multiband_rf[i].name); #endif /*if (L1_FF_MULTIBAND == 0)*/ if (read == 1) ffs_fread(name, p, f1->size); else //write == 0 { ffs_fwrite(name, p, f1->size); // wait until ffs write has finished #if FFS_WORKAROUND == 1 stat.inode = 0; time = 0; do { rvf_delay(10); // in milliseconds time += 10; ffs_stat(name, &stat); } while (stat.inode == 0 && time < 500); #endif } } f1++; } } #if (L1_FF_MULTIBAND == 0) } #endif } /*-------------------------------------------------------*/ /* Cust_init_std() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Init Standard variable configuration */ /*-------------------------------------------------------*/ void Cust_init_std(void) #if (L1_FF_MULTIBAND == 0) { UWORD8 std = l1_config.std.id; UWORD8 band1, band2; T_RF_BAND *pt1, *pt2; band1 = std_config[std].band[0]; band2 = std_config[std].band[1]; //get these from std pt1 = band_config[band1].addr; pt2 = band_config[band2].addr; // copy rf-struct from default flash to ram memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND)); if(std_config[std].band[1] != BAND_NONE ) memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND)); // Read all RF and system configuration from FFS *before* we copy any of // the rf structure variables to other places, like L1. config_ffs_read('*'); l1_config.std.first_radio_freq = std_config[std].first_arfcn; if(band2!=0) l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1; else l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0 // if band2 is not used it is initialised with zeros l1_config.std.nbmax_carrier = band_config[band1].max_carrier; if(band2!=0) l1_config.std.nbmax_carrier += band_config[band2].max_carrier; l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr; l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr; l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp; l1_config.std.cal_freq1_band1 = 0; l1_config.std.cal_freq1_band2 = 0; l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high; l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq; l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high; l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq; l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1; // init variable indicating which radio bands are supported by the chosen RF l1_config.std.radio_band_support = rf.radio_band_support; //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration // on a need basis ? } #else { UWORD8 i; for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) { switch(multiband_rf[i].gsm_band_identifier) { case RF_GSM900: rf_band[i]=rf_900; break; case RF_GSM850: rf_band[i]=rf_850; break; case RF_DCS1800: rf_band[i]=rf_1800; break; case RF_PCS1900: rf_band[i]=rf_1900; break; default: break; } } config_ffs_read('*'); } #endif // if (L1_FF_MULTIBAND == 0) /*-------------------------------------------------------*/ /* Cust_init_params() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Init RF dependent paramters (AGC, TX) */ /*-------------------------------------------------------*/ void Cust_init_params(void) { #if (CODE_VERSION==SIMULATION) extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME; l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME; #else l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME; l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME; #endif // Convert SYNTH_SETUP_TIME into SPLIT. // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin. l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time; l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time; l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC; l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS; l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - TA_MAX - l1_config.params.tx_synth_setup_time - EPSILON_OFFS; // TX duration = ramp up time + burst duration (data + tail bits) l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL; l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION; l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); // time for the end of RX and TX TPU scenarios l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING; l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; // FB26 anchoring time is computed backward to leave only 6 qbit margin between // FB26 window and next activity (RX time tracking). // This margin is used as follow: // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD) // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD) // --------- // Total: 3 qbit l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - #if (CODE_VERSION == SIMULATION) // simulator: end of scenario not included in window (no serialization) 1 - #else // RF dependent end of RX TPU scenario l1_config.params.rx_tpu_scenario_ending - #endif EPSILON_SYNC - TPU_SLEEP_LOAD - SERV_OFFS_REST_LOAD - FB26_ACQUIS_DURATION - PROVISION_TIME + TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE; l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time + PROVISION_TIME - l1_config.params.rx_synth_setup_time - EPSILON_OFFS; l1_config.params.guard_bits = rf.tx.guard_bits; l1_config.params.prg_tx_gsm = rf.tx.prg_tx; l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; l1_config.params.low_agc = rf.rx.agc.low_agc; l1_config.params.high_agc = rf.rx.agc.high_agc; l1_config.params.il_min = IL_MIN; l1_config.params.fixed_txpwr = FIXED_TXPWR; l1_config.params.eeprom_afc = rf.afc.eeprom_afc; l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF; l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; l1_config.params.psi_st = rf.afc.psi_st; l1_config.params.psi_st_32 = rf.afc.psi_st_32; l1_config.params.psi_st_inv = rf.afc.psi_st_inv; #if (CODE_VERSION == SIMULATION) #if (VCXO_ALGO == 1) l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm #endif #else #if (VCXO_ALGO == 1) l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity #if (NEW_SNR_THRESHOLD == 0) l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold #else l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD; #endif /* NEW_SNR_THRESHOLD */ l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count #endif #endif #if DCO_ALGO #if (RF_FAM == 10) // Enable DCO algorithm for direct conversion RFs l1_config.params.dco_enabled = TRUE; #else l1_config.params.dco_enabled = FALSE; #endif #endif #if (ANLG_FAM == 1) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset #endif #if (ANLG_FAM == 2) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset #endif #if (ANLG_FAM == 3) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON" l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset #endif #if (RF_FAM == 61) l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2]; l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1]; l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2]; #endif #if (ANLG_FAM == 11) l1_config.params.vulgain = abb[ABB_VULGAIN]; l1_config.params.vdlgain = abb[ABB_VDLGAIN]; l1_config.params.sidetone = abb[ABB_SIDETONE]; l1_config.params.ctrl1 = abb[ABB_CTRL1]; l1_config.params.ctrl2 = abb[ABB_CTRL2]; l1_config.params.ctrl3 = abb[ABB_CTRL3]; l1_config.params.ctrl4 = abb[ABB_CTRL4]; l1_config.params.ctrl5 = abb[ABB_CTRL5]; l1_config.params.ctrl6 = abb[ABB_CTRL6]; l1_config.params.popauto = abb[ABB_POPAUTO]; l1_config.params.outen1 = abb[ABB_OUTEN1]; l1_config.params.outen2 = abb[ABB_OUTEN2]; l1_config.params.outen3 = abb[ABB_OUTEN3]; l1_config.params.aulga = abb[ABB_AULGA]; l1_config.params.aurga = abb[ABB_AURGA]; #endif } /************************************/ /* Automatic Gain Control */ /************************************/ /*-------------------------------------------------------*/ /* Cust_get_agc_from_IL() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : returns agc value */ /*-------------------------------------------------------*/ WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val) { UWORD16 agc_index_temp; // radio_freq currently not used // this parameter is passed in order to allow band dependent tables for specific RFs // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS) agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq)); agc_index= agc_index_temp>>1; if (agc_index > 120) agc_index = 120; // Clip agc_index switch (table_id) { case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]); case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]); case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]); } return (0);//omaps00090550 } /*-------------------------------------------------------*/ /* Cust_get_agc_band */ /*-------------------------------------------------------*/ /* Parameters : radio_freq */ /* Return : band number */ /* Functionality : Computes the band for RF calibration */ /*-------------------------------------------------------*/ /*---------------------------------------------*/ UWORD8 band_number; #if (CODE_VERSION == SIMULATION) UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) #else UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) #endif { // WORD32 i =0 ; //omaps00090550 for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++) { if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound) return(band_number); } // Should never happen! return(0); } #if (L1_FF_MULTIBAND == 0) /*-------------------------------------------------------*/ /* Cust_is_band_high */ /*-------------------------------------------------------*/ /* Parameters : arfcn */ /* Return : 0 if low band */ /* 1 if high band */ /* Functionality : Generic function which return 1 if */ /* arfcn is in the high band */ /*-------------------------------------------------------*/ UWORD8 Cust_is_band_high(UWORD16 radio_freq) { UWORD16 max_carrier; UWORD8 std = l1_config.std.id; max_carrier = band_config[std_config[std].band[0]].max_carrier; return(((radio_freq >= l1_config.std.first_radio_freq) && (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2); } #endif /*-------------------------------------------------------*/ /* l1ctl_encode_delta2() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ WORD8 l1ctl_encode_delta2(UWORD16 radio_freq) { WORD8 delta2_freq; UWORD16 i; UWORD16 arfcn; #if (L1_FF_MULTIBAND == 0) UWORD8 band; band = Cust_is_band_high(radio_freq); arfcn = Convert_l1_radio_freq(radio_freq); #else WORD8 band; // Corrected for input being rf_freq and not l1_freq arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); #endif i = Cust_get_agc_band(arfcn,band); // delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib; //temperature compensation for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++) { if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature) { delta2_freq += rf_band[band].rx.temp[i].agc_calib; break; } } return(delta2_freq); } #if (L1_FF_MULTIBAND == 0) #else /*-------------------------------------------------------*/ /* l1ctl_get_g_magic() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) { // Corrected for input being rf_freq and not l1_freq return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic); } /*-------------------------------------------------------*/ /* l1ctl_get_lna_att() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) { // The function is provided with rf_freq as input so // convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att); // return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att); } /*-------------------------------------------------------*/ /* l1ctl_encode_delta1() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) { return 0; } /*-------------------------------------------------------*/ /* l1ctl_encode_lna() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1ctl_encode_lna( UWORD8 input_level, UWORD8 *lna_state, UWORD16 radio_freq) { /*** LNA Hysteresis is implemented as following : | On|---<>----+-------+ | | | LNA | | | | ^ v | | | | | | Off| +-------+----<>----- +-------------------------------- 50 40 30 20 input_level /-dBm THR_HIGH THR_LOW ***/ WORD8 band; // Corrected for input to be rf_freq and not l1_freq band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]; if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ? { *lna_state = LNA_ON; // lna_off = FALSE } else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ? { *lna_state = LNA_OFF; // lna off = TRUE } } UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq) { return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq); } #endif //if L1_FF_MULTIBAND == 0) /************************************/ /* TX Management */ /************************************/ /*-------------------------------------------------------*/ /* Cust_get_ramp_tab */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Notes: Cal+ APCRAM : Dwn(15:11)Up(10:6)Forced(0) Locosto: APCRAM: Dwn(15:8)Up(7:0) */ /*-------------------------------------------------------*/ void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq) { UWORD16 index_up, index_down,j, arfcn; #if (L1_FF_MULTIBAND == 0) UWORD8 band; band = Cust_is_band_high(radio_freq); arfcn = Convert_l1_radio_freq(radio_freq); #else WORD8 band; // Corrected for input being rf_freq and not l1_freq arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); #endif //if( L1_FF_MULTIBAND == 0) index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index; index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index; #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) for (j=0; j<16; j++) { a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) | ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) | 0x14; } #endif #if (RF_FAM == 61) // 20 Coeff each 8 (RampDown) + 8 (RampUp) for (j=0; j<20; j++) { a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) | ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ; } #endif } /*-------------------------------------------------------*/ /* get_pwr_data */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq #if (REL99 && FF_PRF) , UWORD8 number_uplink_timeslot #endif ) { UWORD16 i,j; UWORD16 arfcn; T_TX_LEVEL *a_tx_levels; #if (APC_VBAT_COMP == 1) static UWORD16 apc_max_value = APC_MAX_VALUE; #endif #if(ORDER2_TX_TEMP_CAL==1) WORD16 pwr_data; #else UWORD16 pwr_data; #endif #if (L1_FF_MULTIBAND == 0) UWORD8 band; band = Cust_is_band_high(radio_freq); arfcn = Convert_l1_radio_freq(radio_freq); #else WORD8 band; // Corrected for input being rf_freq and not l1_freq arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); #endif //if( L1_FF_MULTIBAND == 0) // band = Cust_is_band_high(radio_freq); // arfcn = Convert_l1_radio_freq(radio_freq); a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure #if REL99 #if FF_PRF // uplink power reduction feature which decrease power level in case of uplink multislot a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels); #endif #endif // get uncalibrated apc pwr_data = a_tx_levels->apc; i = a_tx_levels->chan_cal_index; // get index for channel compensation j=0; while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit) j++; // channel calibrate apc pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; // temperature compensate apc { T_TX_TEMP_CAL *pt; pt = rf_band[band].tx.temp; while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1))) pt++; #if(ORDER2_TX_TEMP_CAL==1) pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c if(pwr_data < 0) pwr_data = 0; #else pwr_data += pt->apc_calib; #endif } // Vbat compensate apc #if (APC_VBAT_COMP == 1) if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD) apc_max_value = APC_MAX_VALUE_LOW_BAT; else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD) apc_max_value = APC_MAX_VALUE; // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one if (pwr_data > apc_max_value) pwr_data = apc_max_value; #endif // APC_VBAT_COMP == 1 return(pwr_data); } #endif #if(REL99 && FF_PRF) /*-------------------------------------------------------*/ /* Cust_get_uplink_apc_power_reduction */ /*-------------------------------------------------------*/ /* Parameters : */ /* - frenquency band */ /* - modulation type */ /* - number of uplink timeslot */ /* - pointer to radio power control structure */ /* Return : */ /* - pointer to radio power control structure */ /* */ /* Functionality : This function returns a pointer to */ /* the radio power control structure after power */ /* reduction processing. */ /* Depending of the number of uplink timeslot, the */ /* analogue power control (apc) value can be reduced */ /* in order to limit effect of terminal heat */ /* dissipation due to power amplifier. */ /*-------------------------------------------------------*/ T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, UWORD8 number_uplink_timeslot, T_TX_LEVEL *p_tx_level) { T_TX_LEVEL *p_power_reduction_tx_level; #if TESTMODE if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE)) return p_tx_level ; // return without any power reduction #endif if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT)) { number_uplink_timeslot--; // index start from 0 } else { return p_tx_level; // abnormal case we do not apply any power reduction } p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]); // We select the lowest power level in order to apply power reduction #if (CODE_VERSION != SIMULATION) if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power #else if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse #endif return p_power_reduction_tx_level; else return p_tx_level; } #endif /*-------------------------------------------------------*/ /* Cust_Init_Layer1 */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Load and boot the DSP */ /* Initialize shared memory and L1 data structures */ /*-------------------------------------------------------*/ void Cust_Init_Layer1(void) { T_MMI_L1_CONFIG cfg; // Get the current band configuration from the flash #if (OP_WCP==1) && (OP_L1_STANDALONE!=1) extern unsigned char ffs_GetBand(); cfg.std = ffs_GetBand(); #else // NO OP_WCP // cfg.std = std; cfg.std = STD; #endif // OP_WCP cfg.tx_pwr_code = 1; // sleep management configuration #if(L1_POWER_MGT == 0) cfg.pwr_mngt = 0; cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep #endif #if(L1_POWER_MGT == 1) cfg.pwr_mngt = 1; cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep #endif #if (CODE_VERSION != SIMULATION) cfg.dwnld = DWNLD; //external define from makefile #endif l1_initialize(&cfg); //add below line for CSR 174476 trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID); get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID); } /*****************************************************************************************/ /*************************** TESTMODE functions **********************************/ /*****************************************************************************************/ /*------------------------------------------------------*/ /* madc_hex_2_physical */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Function to convert MAD hexadecimal */ /* values into physical values */ /*------------------------------------------------------*/ void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy) { WORD16 i; UWORD16 y; WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1; WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */ //store raw ADC values memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw)); // Convert Vbat [mV] : direct equation with slope and offset compensation for (i = ADC_VBAT; i<ADC_RFTEMP; i++) adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; /*Convert RF Temperature [Celsius]: binsearch into a table*/ y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/ while((Smax-Smin) > 1 ) { if(y < temperature[index].adc) Smax=index; else Smin=index; index = (Smax+Smin)/2; } adc.converted[ADC_RFTEMP] = temperature[index].temp; for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++) adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; //store converted ADC values memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw)); } /*------------------------------------------------------*/ /* get_cal_from_nvmem */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Copy calibrated parameter to */ /* calibration structure in RAM */ /*------------------------------------------------------*/ void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) { } /*------------------------------------------------------*/ /* save_cal_from_nvmem */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Copy calibrated structure from RAM */ /* into NV memory */ /*------------------------------------------------------*/ UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) { return (0); } #if (TRACE_TYPE == 4) /*------------------------------------------------------*/ /* l1_cst_l1_parameters */ /*------------------------------------------------------*/ /* Parameters : s: pointer on configuration string */ /* Return : nothing: global var are set */ /* Functionality : Set global L1 vars for dynamic trace */ /* and configuration */ /* */ /* This function is called when a CST message is sent */ /* from the Condat Panel. */ /*------------------------------------------------------*/ void l1_cst_l1_parameters(char *s) { /* a sample command string can be: L1_PARAMS=<1,2,3,4,5> or L1_PARAMS=<1,23,3E32,4,5> with n parameters (here: 5 params); n>=1 parameters are decoded as hexadecimal unsigned integers (UWORD16) */ UWORD8 uNParams = 0; /* Number of parameters */ UWORD32 aParam[10]; /* Parameters array */ UWORD8 uIndex = 0; /* *** retrieve all parameters *** */ while (s[uIndex] != '<') uIndex++; uIndex++; aParam[0] = 0; /* uIndex points on 1st parameter */ while (s[uIndex] != '>') { if (s[uIndex] == ',') { uNParams++; aParam[uNParams] = 0; } else { /* uIndex points on a parameter char */ UWORD8 uChar = s[uIndex]; aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */ if ((uChar>='0') && (uChar<='9')) aParam[uNParams] += (uChar - '0'); /* retrieve value */ else if ((uChar>='A') && (uChar<='F')) aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */ else if ((uChar>='a') && (uChar<='f')) aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */ } uIndex++; /* go to next char */ } /* increment number of params */ uNParams++; /* *** handle parameters *** */ /* 1st param: command type 2nd param: argument for command type */ switch (aParam[0]) { case 0: /* Trace setting */ /* The 2nd parameter contains the trace bitmap*/ if (uNParams >=2) trace_info.current_config->l1_dyn_trace = aParam[1]; else trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */ Trace_dyn_trace_change(); break; default: /* ignore it */ break; } // switch } #endif #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \ (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \ (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \ (CHIPSET == 11) || (CHIPSET == 12)) /*-------------------------------------------------------*/ /* power_down_config() : temporary implementation !!! */ /*-------------------------------------------------------*/ /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */ /* clocks to be cut in BIG sleep */ /* Return : */ /* Functionality : set the l1s variables */ /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */ /* according to the desired mode. */ /*-------------------------------------------------------*/ void power_down_config(UWORD8 sleep_mode, UWORD16 clocks) { #if (OP_L1_STANDALONE == 1) if(sleep_mode != NO_SLEEP) #endif { l1_config.pwr_mngt = PWR_MNGT; l1s.pw_mgr.mode_authorized = sleep_mode; l1s.pw_mgr.clocks = clocks; } #if (OP_L1_STANDALONE == 0) l1s.pw_mgr.enough_gaug = FALSE; #endif } #endif //added for L1 standalone DRP calibration- this will overwrite the previous data #if (OP_L1_STANDALONE == 1) #pragma DATA_SECTION(drp_l1_standalone_calib_data, ".drp_l1_standalone_calib_data"); T_DRP_SW_DATA drp_l1_standalone_calib_data; #pragma DATA_SECTION(valid_dro_standalone_calib_data_flag , ".valid_dro_standalone_calib_data_flag"); UWORD32 valid_dro_standalone_calib_data_flag; //const T_DRP_SW_DATA drp_sw_data_init = { (UINT16) sizeof(T_DRP_CALIB), } -this needs to be filled by CCS //added for L1 standalone DRP calibration- ends #endif // for DRP Calibration /*-------------------------------------------------------*/ /* Cust_init_params_drp() */ /*-------------------------------------------------------*/ /* Parameters : none */ /* Return : none */ /* Functionality : Intialization of DRP calibration. */ /*-------------------------------------------------------*/ #if (L1_DRP == 1) void Cust_init_params_drp(void) { #if (DRP_FW_EXT==1) l1s.boot_result=drp_sw_data_calib_upload_from_ffs(&drp_sw_data_calib); drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); #else // DRP_FW_EXT==0 volatile UINT16 indx, strsize; volatile UINT8 *ptrsrc, *ptrdst; #if (OP_L1_STANDALONE == 0) if(drp_sw_data_calib.length != drp_sw_data_init.length) { #endif // For the 1st time FFS might have garbage, if so use the above as check to ensure //and copy from the .drp_sw_data_init structure. // Copy drp_sw_data_init into drp_sw_data_calib strsize = sizeof(T_DRP_SW_DATA); ptrsrc = (UINT8 *)(&drp_sw_data_init); ptrdst = (UINT8 *)(&drp_sw_data_calib); for(indx=0;indx < strsize;indx++) *ptrdst++ = *ptrsrc++; #if (OP_L1_STANDALONE == 0) } #endif drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib); //added for L1 standalone DRP calibration- this will overwrite the previous data #if (OP_L1_STANDALONE == 1) if(valid_dro_standalone_calib_data_flag == 0xDEADBEAF ) //indicates down the data via CCS drp_copy_sw_data_to_drpsrm(&drp_l1_standalone_calib_data); #endif //added for L1 standalone DRP calibration- ends #endif // DRP_FW_EXT } #endif #if (DRP_FW_EXT==1) void l1_get_boot_result_and_version(T_L1_BOOT_VERSION_CODE * p_version) { if(! p_version) { return; } p_version->dsp_code_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number1; p_version->dsp_patch_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number2; p_version->mcu_tcs_program_release = PROGRAM_RELEASE_VERSION; p_version->mcu_tcs_internal = INTERNAL_VERSION; p_version->mcu_tcs_official = OFFICIAL_VERSION; p_version->drp_maj_ver = drp_ref_sw_ver; p_version->drp_min_ver = drp_ref_sw_tag; p_version->boot_result = l1s.boot_result; } #endif /* DRP_FW_EXT */