FreeCalypso > hg > freecalypso-sw
view gsm-fw/nucleus/demo/demo.c @ 604:45bf440cc677
gsm-fw/L1/audio_include: initial preen over the imported LoCosto headers
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Thu, 28 Aug 2014 19:08:09 +0000 |
parents | afceeeb2cba1 |
children |
line wrap: on
line source
/* Include Nucleus C-Library file */ //#include "ncl\inc\nu_ncl.h" /* Include necessary Nucleus PLUS files. */ #include "nucleus.h" /* Define serial output/input functionality. To disable serial I/O, replace NU_TRUE with NU_FALSE */ #define NU_SERIAL_OUTPUT NU_TRUE #define NU_SERIAL_INPUT NU_TRUE #if (NU_SERIAL_OUTPUT) #include "nu_sd.h" /* Nucleus Serial Driver interface */ #endif /* Define Application data structures. */ NU_TASK Task_0; NU_TASK Task_1; NU_TASK Task_2; NU_TASK Task_3; NU_TASK Task_4; NU_TASK Task_5; NU_QUEUE Queue_0; NU_SEMAPHORE Semaphore_0; NU_EVENT_GROUP Event_Group_0; NU_MEMORY_POOL System_Memory; /* Allocate global counters. */ UNSIGNED Task_Time; UNSIGNED Task_2_messages_received; UNSIGNED Task_2_invalid_messages; UNSIGNED Task_1_messages_sent; NU_TASK *Who_has_the_resource; UNSIGNED Event_Detections; #if (NU_SERIAL_OUTPUT) NU_SERIAL_PORT port; #endif #ifdef NU_FIQ_DEMO UINT32 FIQ_Count; #endif extern UNSIGNED TMD_System_Clock; /* Define prototypes for function references. */ VOID task_0(UNSIGNED argc, VOID *argv); VOID task_1(UNSIGNED argc, VOID *argv); VOID task_2(UNSIGNED argc, VOID *argv); VOID task_3_and_4(UNSIGNED argc, VOID *argv); VOID task_5(UNSIGNED argc, VOID *argv); CHAR buffer[12]; /* temp buffer for Itoa conversion */ INT n; /* strlen */ /* Define the Application_Initialize routine that determines the initial Nucleus PLUS application environment. */ void Application_Initialize(void *first_available_memory) { VOID *pointer; STATUS status; /* Create a system memory pool that will be used to allocate task stacks, queue areas, etc. */ status = NU_Create_Memory_Pool(&System_Memory, "SYSMEM", first_available_memory, 25000, 50, NU_FIFO); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create each task in the system. */ /* Create task 0. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_0, "TASK 0", task_0, 0, NU_NULL, pointer, 2000, 1, 20, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create task 1. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_1, "TASK 1", task_1, 0, NU_NULL, pointer, 2000, 10, 5, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create task 2. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_2, "TASK 2", task_2, 0, NU_NULL, pointer, 2000, 10, 5, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create task 3. Note that task 4 uses the same instruction area. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_3, "TASK 3", task_3_and_4, 0, NU_NULL, pointer, 2000, 5, 0, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create task 4. Note that task 3 uses the same instruction area. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_4, "TASK 4", task_3_and_4, 0, NU_NULL, pointer, 2000, 5, 0, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create task 5. */ NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND); status = NU_Create_Task(&Task_5, "TASK 5", task_5, 0, NU_NULL, pointer, 2000, 7, 0, NU_PREEMPT, NU_START); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create communication queue. */ NU_Allocate_Memory(&System_Memory, &pointer, 100*sizeof(UNSIGNED), NU_NO_SUSPEND); status = NU_Create_Queue(&Queue_0, "QUEUE 0", pointer, 100, NU_FIXED_SIZE, 1, NU_FIFO); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create synchronization semaphore. */ status = NU_Create_Semaphore(&Semaphore_0, "SEM 0", 1, NU_FIFO); if (status != NU_SUCCESS) { ERC_System_Error(status); } /* Create event flag group. */ status = NU_Create_Event_Group(&Event_Group_0, "EVGROUP0"); if (status != NU_SUCCESS) { ERC_System_Error(status); } } /* Define the system timer task. More complicated systems might use a routine like this to perform periodic message sending and other time oriented functions. */ void task_0(UNSIGNED argc, VOID *argv) { STATUS status; #if (NU_SERIAL_OUTPUT) CHAR msg[40]; INT i; CHAR ch; #endif /* NU_SERIAL_OUTPUT */ #if (NU_SERIAL_OUTPUT) /* Init the serial port. */ port.com_port = DEFAULT_UART_PORT; port.baud_rate = DEFAULT_UART_BAUD; port.data_bits = DEFAULT_UART_DATA; port.stop_bits = DEFAULT_UART_STOP; port.parity = DEFAULT_UART_PARITY; port.data_mode = DEFAULT_UART_MODE; port.communication_mode = SERIAL_MODE; port.sd_buffer_size = DEFAULT_UART_BUFFER; status = NU_SD_Init_Port (&port); if (status != NU_SUCCESS) { ERC_System_Error(status); } #endif /* NU_SERIAL_OUTPUT */ /* Access argc and argv just to avoid compilation warnings. */ status = (STATUS) argc + (STATUS) argv; /* Set the clock to 0. This clock ticks every 18 system timer ticks. */ Task_Time = 0; while(1) { /* Sleep for 100 timer ticks. The value of the tick is programmable in INT.S and is relative to the speed of the target system. */ NU_Sleep(100); #if (NU_SERIAL_OUTPUT) NU_SD_Put_String("\n\r****************************************", &port); NU_SD_Put_String("***************************************\n\r", &port); NU_SD_Put_String(NU_Release_Information(), &port); NU_SD_Put_String("\n\r", &port); NU_SD_Put_String("****************************************", &port); NU_SD_Put_String("***************************************\n\n\r", &port); NU_SD_Put_String("System Variable Status: \n\n\r", &port); strcpy(msg, "Task 0 time: "); sprintf(buffer, "%lu", Task_Time); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\r"); } NU_SD_Put_String(msg, &port); strcpy(msg, "Event detections: "); sprintf(buffer, "%lu", Event_Detections); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\n\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\n\n\r"); } NU_SD_Put_String(msg, &port); strcpy(msg, "Task 1 messages sent: "); sprintf(buffer, "%lu", Task_1_messages_sent); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\r"); } NU_SD_Put_String(msg, &port); strcpy(msg, "Task 2 messages received: "); sprintf(buffer, "%lu", Task_2_messages_received); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\n\r"); } NU_SD_Put_String(msg, &port); strcpy(msg, "Task 2 invalid messages: "); sprintf(buffer, "%lu", Task_2_invalid_messages); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\n\r"); } NU_SD_Put_String(msg, &port); if (Who_has_the_resource == &Task_3) NU_SD_Put_String("Who has the resource: Task 3", &port); else if (Who_has_the_resource == &Task_4) NU_SD_Put_String("Who has the resource: Task 4", &port); else NU_SD_Put_String("Who has the resource: Nobody", &port); NU_SD_Put_String("\n\n\n\r", &port); strcpy(msg, "Timer Interrupts: "); sprintf(buffer, "%lu", TMD_System_Clock); n = strlen(buffer); if (n>=8) { strcat(msg, buffer); strcat(msg, "\n\n\r"); } else { for (i=0;i<(8-n);i++) strcat(msg, " "); strcat(msg, buffer); strcat(msg, "\n\n\r"); } NU_SD_Put_String(msg, &port); NU_SD_Put_String("Buffer: ", &port); #if (NU_SERIAL_INPUT) while (NU_SD_Data_Ready(&port)) { ch = NU_SD_Get_Char(&port); NU_SD_Put_Char(ch, &port); } #endif /* NU_SERIAL_INPUT */ NU_SD_Put_String("\n\n\r", &port); #endif /* NU_SERIAL_OUTPUT */ /* Increment the time. */ Task_Time++; /* Set an event flag to lift the suspension on task 5. */ status = NU_Set_Events(&Event_Group_0, 1, NU_OR); } } /* Define the queue sending task. Note that the only things that cause this task to suspend are queue full conditions and the time slice specified in the configuration file. */ void task_1(UNSIGNED argc, VOID *argv) { STATUS status; UNSIGNED Send_Message; /* Access argc and argv just to avoid compilation warnings. */ status = (STATUS) argc + (STATUS) argv; /* Initialize the message counter. */ Task_1_messages_sent = 0; /* Initialize the message contents. The receiver will examine the message contents for errors. */ Send_Message = 0; while(1) { /* Send the message to Queue_0, which task 2 reads from. Note that if the destination queue fills up this task suspends until room becomes available. */ status = NU_Send_To_Queue(&Queue_0, &Send_Message, 1, NU_SUSPEND); /* Determine if the message was sent successfully. */ if (status == NU_SUCCESS) Task_1_messages_sent++; /* Modify the contents of the next message to send. */ Send_Message++; } } /* Define the queue receiving task. Note that the only things that cause this task to suspend are queue empty conditions and the time slice specified in the configuration file. */ void task_2(UNSIGNED argc, VOID *argv) { STATUS status; UNSIGNED Receive_Message; UNSIGNED received_size; UNSIGNED message_expected; /* Access argc and argv just to avoid compilation warnings. */ status = (STATUS) argc + (STATUS) argv; /* Initialize the message counter. */ Task_2_messages_received = 0; /* Initialize the message error counter. */ Task_2_invalid_messages = 0; /* Initialize the message contents to expect. */ message_expected = 0; while(1) { /* Retrieve a message from Queue_0, which task 1 writes to. Note that if the source queue is empty this task suspends until something becomes available. */ status = NU_Receive_From_Queue(&Queue_0, &Receive_Message, 1, &received_size, NU_SUSPEND); /* Determine if the message was received successfully. */ if (status == NU_SUCCESS) Task_2_messages_received++; /* Check the contents of the message against what this task is expecting. */ if ((received_size != 1) || (Receive_Message != message_expected)) Task_2_invalid_messages++; /* Modify the expected contents of the next message. */ message_expected++; } } /* Tasks 3 and 4 want a single resource. Once one of the tasks gets the resource, it keeps it for 100 clock ticks before releasing it. During this time the other task suspends waiting for the resource. Note that both task 3 and 4 use the same instruction areas but have different stacks. */ void task_3_and_4(UNSIGNED argc, VOID *argv) { STATUS status; /* Access argc and argv just to avoid compilation warnings. */ status = (STATUS) argc + (STATUS) argv; /* Loop to allocate and deallocate the resource. */ while(1) { /* Allocate the resource. Suspend until it becomes available. */ status = NU_Obtain_Semaphore(&Semaphore_0, NU_SUSPEND); /* If the status is successful, show that this task owns the resource. */ if (status == NU_SUCCESS) { Who_has_the_resource = NU_Current_Task_Pointer(); /* Sleep for 100 ticks to cause the other task to suspend on the resource. */ NU_Sleep(100); /* Release the semaphore. */ NU_Release_Semaphore(&Semaphore_0); } } } /* Define the task that waits for the event to be set by task 0. */ void task_5(UNSIGNED argc, VOID *argv) { STATUS status; UNSIGNED event_group; /* Access argc and argv just to avoid compilation warnings. */ status = (STATUS) argc + (STATUS) argv; /* Initialize the event detection counter. */ Event_Detections = 0; /* Continue this process forever. */ while(1) { /* Wait for an event and consume it. */ status = NU_Retrieve_Events(&Event_Group_0, 1, NU_OR_CONSUME, &event_group, NU_SUSPEND); /* If the status is okay, increment the counter. */ if (status == NU_SUCCESS) { Event_Detections++; } } } #ifdef NU_FIQ_DEMO void FIQ_LISR(VOID) { FIQ_Count++; } #endif