FreeCalypso > hg > freecalypso-sw
view gsm-fw/bsp/clkm.c @ 305:4dccc9d3305f
gsm-fw: checking in DAR from Leonardo source
author | Michael Spacefalcon <msokolov@ivan.Harhan.ORG> |
---|---|
date | Sun, 16 Mar 2014 05:48:58 +0000 |
parents | afceeeb2cba1 |
children |
line wrap: on
line source
/****************************************************************************** TEXAS INSTRUMENTS INCORPORATED PROPRIETARY INFORMATION Property of Texas Instruments -- For Unrestricted Internal Use Only Unauthorized reproduction and/or distribution is strictly prohibited. This product is protected under copyright law and trade secret law as an unpublished work. Created 1987, (C) Copyright 1997 Texas Instruments. All rights reserved. Filename : clkm.c Description : Set of functions useful to test the Saturn CLKM peripheral Project : drivers Author : pmonteil@tif.ti.com Patrice Monteil. Version number : 1.11 Date and time : 10/23/01 14:43:31 Previous delta : 10/23/01 14:43:31 SCCS file : /db/gsm_asp/db_ht96/dsp_0/gsw/rel_0/mcu_l1/release_gprs/mod/emu_p/EMU_P_FRED_CLOCK/drivers1/common/SCCS/s.clkm.c Sccs Id (SID) : '@(#) clkm.c 1.11 10/23/01 14:43:31 ' *****************************************************************************/ //############################################################ //############################################################ //### Be careful: this file must be placed in Flash Memory ### //### and compiled in 16 bits length intructions ### //### (CF. the function wait_ARM_cycles() ### //############################################################ //############################################################ #include "../include/config.h" #include "../include/sys_types.h" #include "mem.h" #include "clkm.h" static SYS_UWORD32 ratio_wait_loop = 0; #if (CHIPSET == 12) const double dsp_div_value[CLKM_NB_DSP_DIV_VALUE] = {1, 1.5, 2, 3}; #endif #if ((CHIPSET == 4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) /*---------------------------------------------------------------/ /* CLKM_InitARMClock() */ /*--------------------------------------------------------------*/ /* Parameters : clk_src : 0x00 means DPLL selected */ /* 0x01 means VTCX0 selected */ /* 0x03 means CLKIN selected */ /* clk_xp5 : Enable 1.5 or 2.5 division factor */ /* (0 or 1) */ /* clk_div : Division factor applied to clock */ /* source */ /* WARNING : reverse order in comparison to ULYSSE */ /* */ /* Return : none */ /* Functionality :Initialize the ARM Clock frequency */ /*--------------------------------------------------------------*/ void CLKM_InitARMClock(SYS_UWORD16 clk_src, SYS_UWORD16 clk_div, SYS_UWORD16 clk_xp5) { SYS_UWORD16 cntl = * (volatile SYS_UWORD16 *) CLKM_ARM_CLK; cntl &= ~(CLKM_CLKIN0 | CLKM_CLKIN_SEL | CLKM_ARM_MCLK_XP5 | CLKM_MCLK_DIV); cntl |= ((clk_src << 1) | (clk_xp5 << 3) | (clk_div << 4)); * (volatile SYS_UWORD16 *) CLKM_ARM_CLK = cntl; } #else /*---------------------------------------------------------------/ /* CLKM_InitARMClock() */ /*--------------------------------------------------------------*/ /* Parameters : clk_src : 0x00 means CLKIN selected */ /* 0x01 means 32 K selected */ /* 0x02 means External clock selected */ /* */ /* Return : none */ /* Functionality :Initialize the ARM Clock frequency */ /*--------------------------------------------------------------*/ void CLKM_InitARMClock(SYS_UWORD16 clk_src, SYS_UWORD16 clk_div) { SYS_UWORD16 cntl = * (volatile SYS_UWORD16 *) CLKM_ARM_CLK; cntl &= ~(CLKM_LOW_FRQ | CLKM_CLKIN_SEL | CLKM_MCLK_DIV); cntl |= ((clk_src << 1) | (clk_div << 4)); * (volatile SYS_UWORD16 *) CLKM_ARM_CLK = cntl; } #endif /*-------------------------------------------------------*/ /* convert_nanosec_to_cycles() */ /*-------------------------------------------------------*/ /* parameter: time in 10E-9 seconds */ /* return: Number of cycles for the wait_ARM_cycles() */ /* function */ /* */ /* Description: */ /* ------------ */ /* convert x nanoseconds in y cycles used by the ASM loop*/ /* function . Before calling this function, call the */ /* initialize_wait_loop() function */ /* Called when the HardWare needs time to wait */ /*-------------------------------------------------------*/ SYS_UWORD32 convert_nanosec_to_cycles(SYS_UWORD32 time) { return( time / ratio_wait_loop); } /*-------------------------------------------------------*/ /* initialize_wait_loop() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* Init the ratio used to convert time->Cycles according */ /* to hardware parameters */ /* measurement time for this function (ARM 39Mhz, 3 waits*/ /* states) = 75 micoseconds */ /*-------------------------------------------------------*/ void initialize_wait_loop(void) { #define NBR_CYCLES_IN_LOOP 5 // this value is got from an oscilloscope measurement double src_ratio; double final_ratio; SYS_UWORD16 flash_access_size; SYS_UWORD16 flash_wait_state; SYS_UWORD32 nbr; SYS_UWORD32 arm_clock; ////////////////////////////////// // compute the ARM clock used // ////////////////////////////////// { SYS_UWORD16 arm_mclk_xp5; SYS_UWORD16 arm_ratio; SYS_UWORD16 clk_src; SYS_UWORD16 clkm_cntl_arm_clk_reg = * (volatile SYS_UWORD16 *) CLKM_CNTL_ARM_CLK; #if ((CHIPSET == 4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) clk_src = (clkm_cntl_arm_clk_reg & MASK_CLKIN) >> 1; switch (clk_src) { case 0x00: //DPLL selected // select the DPLL factor if (((* (volatile SYS_UWORD16 *) MEM_DPLL_ADDR) & DPLL_LOCK) != 0) { SYS_UWORD16 dpll_div; SYS_UWORD16 dpll_mul; dpll_div=DPLL_READ_DPLL_DIV; dpll_mul=DPLL_READ_DPLL_MUL; src_ratio = (double)(dpll_mul)/(double)(dpll_div+1); } else // DPLL in bypass mode { SYS_UWORD16 dpll_div = DPLL_BYPASS_DIV; src_ratio= (double)(1)/(double)(dpll_div+1); } break; case 0x01: //VTCX0 selected src_ratio = 1; break; case 0x03: //CLKIN selected (external clock) src_ratio = 1; break; } // define the division factor applied to clock source (CLKIN or VTCXO or DPLL) arm_ratio = (clkm_cntl_arm_clk_reg & CLKM_MCLK_DIV) >> 4; // check if the 1.5 or 2.5 division factor is enabled arm_mclk_xp5 = clkm_cntl_arm_clk_reg & CLKM_ARM_MCLK_XP5; if (arm_mclk_xp5 == 0) // division factor enable for ARM clock ? { if (arm_ratio == 0) arm_ratio =1; } else arm_ratio = ((arm_ratio>>1) & 0x0001) == 0 ? 1.5 : 2.5; #else // CHIPSET src_ratio = 1; // define the division factor applied to clock source (CLKIN or VTCXO or DPLL) arm_ratio = (clkm_cntl_arm_clk_reg & CLKM_MCLK_DIV) >> 4; // check if the 1.5 or 2.5 division factor is enabled arm_mclk_xp5 = clkm_cntl_arm_clk_reg & MASK_ARM_MCLK_1P5; if (arm_mclk_xp5 == 1) // division factor enable for ARM clock ? arm_ratio = 1.5; else { if (arm_ratio == 0) arm_ratio = 4; else if (arm_ratio == 1 ) arm_ratio = 2; else arm_ratio = 1; } #endif // CHIPSET final_ratio = (src_ratio / (double) arm_ratio); } ////////////////////////////////////////// // compute the Flash wait states used // ////////////////////////////////////////// #if (CHIPSET == 12) flash_access_size = *((volatile SYS_UWORD16 *) MEM_REG_nCS5); #else flash_access_size = *((volatile SYS_UWORD16 *) MEM_REG_nCS0); #endif flash_access_size = (flash_access_size >> 5) & 0x0003; // 0=>8bits, 1=>16 bits, 2 =>32 bits // the loop file is compiled in 16 bits it means // flash 8 bits => 2 loads for 1 16 bits assembler instruction // flash 16 bits => 1 loads for 1 16 bits assembler instruction // flash 32 bits => 1 loads for 1 16 bits assembler instruction (ARM bus 16 bits !!) // !!!!!!!!! be careful: if this file is compile in 32 bits, change these 2 lines here after !!! if (flash_access_size == 0) flash_access_size = 2; else flash_access_size = 1; #if (CHIPSET == 12) /* * WARNING - New ARM Memory Interface features are not supported here below (Page Mode, extended WS, Dummy Cycle,...). */ flash_wait_state = *((volatile SYS_UWORD16 *) MEM_REG_nCS5); #else flash_wait_state = *((volatile SYS_UWORD16 *) MEM_REG_nCS0); #endif flash_wait_state &= 0x001F; ////////////////////////////////////// // compute the length of the loop // ////////////////////////////////////// // Number of flash cycles for the assembler loop nbr = NBR_CYCLES_IN_LOOP; // Number of ARM cycles for the assembler loop nbr = nbr * (flash_wait_state + 1) * (flash_access_size); // time for the assembler loop (unit nanoseconds: 10E-9) arm_clock = final_ratio * 13; // ARM clock in Mhz ratio_wait_loop = (SYS_UWORD32)((nbr*1000) / arm_clock); } /*-------------------------------------------------------*/ /* wait_ARM_cycles() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* Called when the HardWare needs time to wait. */ /* this function wait x cycles and is used with the */ /* convert_nanosec_to_cycles() & initialize_wait_loop() */ /* */ /* Exemple: wait 10 micro seconds: */ /* initialize_wait_loop(); */ /* wait_ARM_cycles(convert_nanosec_to_cycles(10000)) */ /* */ /* minimum time value with cpt_loop = 0 (estimated) */ /* and C-SAMPLE / flash 6,5Mhz ~ 1,5 micro seconds */ /* */ /* */ /* Be careful : in order to respect the rule about the */ /* conversion "time => number of cylcles in this loop" */ /* (Cf the functions: convert_nanosec_to_cycles() and */ /* initialize_wait_loop() ) respect the following rules: */ /* This function must be placed in Flash Memory and */ /* compiled in 16 bits instructions length */ /*-------------------------------------------------------*/ void wait_ARM_cycles(SYS_UWORD32 cpt_loop) { // C code: // while (cpt_loop -- != 0); asm(" CMP A1, #0"); asm(" BEQ END_FUNCTION"); asm("LOOP_LINE: "); asm(" SUB A1, A1, #1"); asm(" CMP A1, #0"); asm(" BNE LOOP_LINE"); asm("END_FUNCTION: "); }