line source
/************* Revision Controle System Header *************
* GSM Layer 1 software
* L1_CUST.C
*
* Filename l1_cust.c
* Version 3.66
* Date 03/21/03
*
************* Revision Controle System Header *************/
//#define GLOBAL
#include "string.h"
#include "l1_confg.h"
#include "l1_const.h"
#include "ulpd.h"
#include "tm_defs.h"
#include "l1_types.h"
#include "l1_time.h"
#include "l1_trace.h"
#include "sys_types.h"
#include "sim.h"
#include "buzzer.h"
#include "serialswitch.h"
#if TESTMODE
#include "l1tm_defty.h"
#endif
#if (AUDIO_TASK == 1)
#include "l1audio_const.h"
#include "l1audio_cust.h"
#include "l1audio_defty.h"
#endif
#if (L1_GTT == 1)
#include "l1gtt_const.h"
#include "l1gtt_defty.h"
#endif
#include "l1_defty.h"
#include "l1_msgty.h"
#include "l1_tabs.h"
#include "l1_varex.h"
#if (VCXO_ALGO == 1)
#include "l1_ctl.h"
#endif
#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
#include "spi_drv.h"
#endif
#if (RF==35)
#include "tpudrv35.h"
#include "l1_rf35.h"
#include "l1_rf35.c"
#endif
#if (RF==12)
#include "tpudrv12.h"
#include "l1_rf12.h"
#include "l1_rf12.c"
#endif
#if (RF==10)
#include "tpudrv10.h"
#include "l1_rf10.h"
#include "l1_rf10.c"
#endif
#if (RF==8)
#include "tpudrv8.h"
#include "l1_rf8.h"
#include "l1_rf8.c"
#endif
#if (RF==2)
#include "l1_rf2.h"
#include "l1_rf2.c"
#endif
// Nucleus functions
extern INT TMD_Timer_State;
extern UWORD32 TMD_Timer; // for big sleep
extern UWORD32 TCD_Priority_Groups;
extern VOID *TCD_Current_Thread;
extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
extern TC_PROTECT TCD_System_Protect;
#if (L2_L3_SIMUL == 0)
#define FFS_WORKAROUND 1
#else
#define FFS_WORKAROUND 0
#endif
#if (FFS_WORKAROUND == 1)
#include "ffs.h"
#else
typedef signed int int32;
typedef signed char effs_t;
typedef int32 filesize_t;
effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
effs_t ffs_fread(const char *name, void *addr, filesize_t size);
#endif
// Import band configuration from Flash module (need to replace by an access function)
//extern UWORD8 std;
extern T_L1_CONFIG l1_config;
extern T_L1S_GLOBAL l1s;
#if (CODE_VERSION != SIMULATION)
// Import serial switch configuration
extern char ser_cfg_info[2];
#endif
void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
void config_rf_rw_band(char type, UWORD8 read);
void config_rf_read(char type);
void config_rf_write(char type);
enum {
RF_ID = 0,
ADC_ID = 1
};
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Defines the location of rf-struct */
/* for each std. */
/*-------------------------------------------------------*/
const static T_BAND_CONFIG band_config[] =
{ /*ffs name, default addr, max carrier, min tx pwr */
{"",(T_RF_BAND *) 0,0,0},//undefined
{"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
{"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
{"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
{"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
#if (RF == 10)
{"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
#endif
{"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
};
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Defines the indices into band_config */
/* for each std. */
/*-------------------------------------------------------*/
const T_STD_CONFIG std_config[] =
{
/* band1 index, band2 index, txpwr turning point, first arfcn*/
{ 0, 0, 0, 0 }, // std = 0 not used
{ BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
{ BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
{ BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
{ BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
{ BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
{ BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
{ BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
#if (RF == 10)
{ BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
#else
{ BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
#endif
};
/*-------------------------------------------------------*/
/* Prototypes of external functions used in this file. */
/*-------------------------------------------------------*/
void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
/*-------------------------------------------------------*/
/* Cust_recover_Os() */
/*-------------------------------------------------------*/
/* */
/* Description: adjust OS from sleep duration */
/* ------------ */
/* This function fix the : */
/* - system clock */
/* - Nucleus timers */
/* - xxxxxx (customer dependant) */
/*-------------------------------------------------------*/
UWORD8 Cust_recover_Os(void)
{
#if (CODE_VERSION != SIMULATION)
if (l1_config.pwr_mngt == PWR_MNGT)
{
UWORD32 current_system_clock;
/***************************************************/
// Fix System clock and Nucleus Timers if any.... */
/***************************************************/
// Fix System clock ....
current_system_clock = NU_Retrieve_Clock();
current_system_clock += l1s.pw_mgr.sleep_duration;
NU_Set_Clock(current_system_clock);
// Fix Nucleus timer (if needed) ....
if (TMD_Timer_State == TM_ACTIVE)
{
TMD_Timer -= l1s.pw_mgr.sleep_duration;
if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
}
/***************************************************/
// Cust dependant part ... */
/***************************************************/
//.............
//.............
//..............
return(TRUE);
}
#endif
}
/*-------------------------------------------------------*/
/* Cust_check_system() */
/*-------------------------------------------------------*/
/* */
/* Description: */
/* ------------ */
/* GSM 1.5 : */
/* - authorize UWIRE clock to be stopped */
/* and write value in l1s.pw_mgr.modules_status. */
/* - authorize ARMIO clock to be stopped if the light is */
/* off and write value in l1s.pw_mgr.modules_status. */
/* - check if SIM clock have been stopped */
/* before allowing DEEP SLEEP. */
/* - check if UARTs are ready to enter deep sleep */
/* - choose the sleep mode */
/* */
/* Return: */
/* ------- */
/* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
/*-------------------------------------------------------*/
UWORD8 Cust_check_system(void)
{
extern UWORD8 why_big_sleep;
#if (CODE_VERSION != SIMULATION)
if (l1_config.pwr_mngt == PWR_MNGT)
{
#if (L2_L3_SIMUL == 0)
// Forbid deep sleep if the light is on
if(LT_Status())
{
//cut ARMIO and UWIRE clocks in big sleep
l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
return(FRAME_STOP); // BIG sleep
}
// Forbid deep sleep if the SIM and UARTs not ready
if(SIM_SleepStatus())
{
#endif
if(SER_UartSleepStatus())
{
return(CLOCK_STOP); // DEEP sleep
}
else why_big_sleep = BIG_SLEEP_DUE_TO_UART;
#if (L2_L3_SIMUL == 0)
}
else why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
#endif
// cut ARMIO and UWIRE clocks in big sleep
l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
return(FRAME_STOP); // BIG sleep
}
#else // Simulation part
return(CLOCK_STOP); // DEEP sleep
#endif
}
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Read the RF configuration, tables etc. */
/* from FFS files. */
/*-------------------------------------------------------*/
const static T_CONFIG_FILE config_files_common[] =
{
#if (CODE_VERSION != SIMULATION)
// The first char is NOT part of the filename. It is used for
// categorizing the ffs file contents:
// f=rf-cal, F=rf-config,
// t=tx-cal, T=tx-config,
// r=rx-cal, R=rx-config,
// s=sys-cal, S=sys-config,
"f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
"F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
#if (VCXO_ALGO == 1)
"F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
#else
"F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
#endif
"R/gsm/rf/rx/agcglobals", &rf.rx.agc, 5 * sizeof(UWORD16),
"R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
"R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
"s/sys/adccal", &adc_cal, sizeof(adc_cal),
"S/sys/abb", &abb, sizeof(abb),
"S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
#endif
NULL, 0, 0 // terminator
};
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Read the RF configurations for */
/* each band from FFS files. These files */
/* are defined for one band, and and used */
/* for all bands. */
/*-------------------------------------------------------*/
const static T_CONFIG_FILE config_files_band[] =
{
// The first char is NOT part of the filename. It is used for
// categorizing the ffs file contents:
// f=rf-cal, F=rf-config,
// t=tx-cal, T=tx-config,
// r=rx-cal, R=rx-config,
// s=sys-cal, S=sys-config,
// generic for all bands
// band[0] is used as template for all bands.
"t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
"t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
"t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
"T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
"r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
"R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
"r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
NULL, 0, 0 // terminator
};
void config_ffs_read(char type)
{
config_rf_read(type);
config_rf_rw_band(type, 1);
}
void config_ffs_write(char type)
{
config_rf_write(type);
config_rf_rw_band(type, 0);
}
void config_rf_read(char type)
{
const T_CONFIG_FILE *file = config_files_common;
while (file->name != NULL)
{
if (type == '*' || type == file->name[0]) {
ffs_fread(&file->name[1], file->addr, file->size);
}
file++;
}
}
void config_rf_write(char type)
{
const T_CONFIG_FILE *file = config_files_common;
while (file->name != NULL)
{
if (type == '*' || type == file->name[0]) {
ffs_fwrite(&file->name[1], file->addr, file->size);
}
file++;
}
}
void config_rf_rw_band(char type, UWORD8 read)
{
const T_CONFIG_FILE *f1 = config_files_band;
UWORD8 i;
WORD32 offset;
char name[64];
char *p;
UWORD8 std = l1_config.std.id;
#if FFS_WORKAROUND == 1
struct stat_s stat;
UWORD16 time;
#endif
for (i=0; i< GSM_BANDS; i++)
{
if(std_config[std].band[i] !=0 )
{
f1 = &config_files_band[0];
while (f1->name != NULL)
{
offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
p = ((char *) &rf_band[i]) + offset;
if (type == '*' || type == f1->name[0])
{
strcpy(name, &f1->name[1]);
strcat(name, ".");
strcat(name, band_config[std_config[std].band[i]].name);
if (read == 1)
ffs_fread(name, p, f1->size);
else //write == 0
{
ffs_fwrite(name, p, f1->size);
// wait until ffs write has finished
#if FFS_WORKAROUND == 1
stat.inode = 0;
time = 0;
do {
rvf_delay(10); // in milliseconds
time += 10;
ffs_stat(name, &stat);
} while (stat.inode == 0 && time < 500);
#endif
}
}
f1++;
}
}
}
}
/*-------------------------------------------------------*/
/* Cust_init_std() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Init Standard variable configuration */
/*-------------------------------------------------------*/
void Cust_init_std(void)
{
UWORD8 std = l1_config.std.id;
UWORD8 band1, band2;
T_RF_BAND *pt1, *pt2;
band1 = std_config[std].band[0];
band2 = std_config[std].band[1];
//get these from std
pt1 = band_config[band1].addr;
pt2 = band_config[band2].addr;
// copy rf-struct from default flash to ram
memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
if(std_config[std].band[1] != BAND_NONE )
memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
// Read all RF and system configuration from FFS *before* we copy any of
// the rf structure variables to other places, like L1.
config_ffs_read('*');
l1_config.std.first_radio_freq = std_config[std].first_arfcn;
if(band2!=0)
l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
else
l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
// if band2 is not used it is initialised with zeros
l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
if(band2!=0)
l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
l1_config.std.cal_freq1_band1 = 0;
l1_config.std.cal_freq1_band2 = 0;
l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
// init variable indicating which radio bands are supported by the chosen RF
l1_config.std.radio_band_support = rf.radio_band_support;
}
/*-------------------------------------------------------*/
/* Cust_init_params() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Init RF dependent paramters (AGC, TX) */
/*-------------------------------------------------------*/
void Cust_init_params(void)
{
#if (CODE_VERSION==SIMULATION)
extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
#else
l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
#endif
// Convert SYNTH_SETUP_TIME into SPLIT.
// We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
TA_MAX -
l1_config.params.tx_synth_setup_time -
EPSILON_OFFS;
// TX duration = ramp up time + burst duration (data + tail bits)
l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
// time for the end of RX and TX TPU scenarios
l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
// FB26 anchoring time is computed backward to leave only 6 qbit margin between
// FB26 window and next activity (RX time tracking).
// This margin is used as follow:
// Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
// Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
// ---------
// Total: 3 qbit
l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
#if (CODE_VERSION == SIMULATION)
// simulator: end of scenario not included in window (no serialization)
1 -
#else
// RF dependent end of RX TPU scenario
l1_config.params.rx_tpu_scenario_ending -
#endif
EPSILON_SYNC -
TPU_SLEEP_LOAD -
SERV_OFFS_REST_LOAD -
FB26_ACQUIS_DURATION -
PROVISION_TIME +
TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
PROVISION_TIME -
l1_config.params.rx_synth_setup_time -
EPSILON_OFFS;
l1_config.params.guard_bits = rf.tx.guard_bits;
l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
l1_config.params.low_agc = rf.rx.agc.low_agc;
l1_config.params.high_agc = rf.rx.agc.high_agc;
l1_config.params.il_min = IL_MIN;
l1_config.params.fixed_txpwr = FIXED_TXPWR;
l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
l1_config.params.psi_st = rf.afc.psi_st;
l1_config.params.psi_st_32 = rf.afc.psi_st_32;
l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
#if (CODE_VERSION == SIMULATION)
#if (VCXO_ALGO == 1)
l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
#endif
#else
#if (VCXO_ALGO == 1)
l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
#endif
#endif
#if DCO_ALGO
#if (RF == 10)
// Enable DCO algorithm for direct conversion RFs
l1_config.params.dco_enabled = TRUE;
#else
l1_config.params.dco_enabled = FALSE;
#endif
#endif
#if (ANALOG == 1)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
#endif
#if (ANALOG == 2)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
#endif
#if (ANALOG == 3)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0
l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
l1_config.params.vaud_cfg = abb[ABB_VAUDCR]; // value at reset
l1_config.params.vauo_onoff = abb[ABB_VAUOCR]; // speech on AUX and EAR
l1_config.params.vaus_vol = abb[ABB_VAUSCR]; // value at reset
l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
#endif
// global variable for access to deep sleep time
l1_config.params.sleep_time = 0;
}
/************************************/
/* Automatic Gain Control */
/************************************/
/*-------------------------------------------------------*/
/* Cust_get_agc_from_IL() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : returns agc value */
/*-------------------------------------------------------*/
WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id)
{
// radio_freq currently not used
// this parameter is passed in order to allow band dependent tables for specific RFs
// (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
if (agc_index > 120)
agc_index = 120; // Clip agc_index
switch (table_id)
{
case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]);
case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]);
case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]);
}
}
/*-------------------------------------------------------*/
/* Cust_get_agc_band */
/*-------------------------------------------------------*/
/* Parameters : radio_freq */
/* Return : band number */
/* Functionality : Computes the band for RF calibration */
/*-------------------------------------------------------*/
/*---------------------------------------------*/
#if (CODE_VERSION == SIMULATION)
UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
#else
UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
#endif
{
WORD32 i ;
for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++)
{
if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound)
return(i);
}
// Should never happen!
return(0);
}
/*-------------------------------------------------------*/
/* Cust_is_band_high */
/*-------------------------------------------------------*/
/* Parameters : arfcn */
/* Return : 0 if low band */
/* 1 if high band */
/* Functionality : Generic function which return 1 if */
/* arfcn is in the high band */
/*-------------------------------------------------------*/
UWORD8 Cust_is_band_high(UWORD16 radio_freq)
{
UWORD16 max_carrier;
UWORD8 std = l1_config.std.id;
max_carrier = band_config[std_config[std].band[0]].max_carrier;
return(((radio_freq >= l1_config.std.first_radio_freq) &&
(radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
}
/*-------------------------------------------------------*/
/* l1ctl_encode_delta2() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
{
WORD8 delta2_freq;
UWORD16 i;
UWORD16 arfcn;
UWORD8 band;
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
i = Cust_get_agc_band(arfcn,band); //
delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
//temperature compensation
for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
{
if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
{
delta2_freq += rf_band[band].rx.temp[i].agc_calib;
break;
}
}
return(delta2_freq);
}
/************************************/
/* TX Management */
/************************************/
/*-------------------------------------------------------*/
/* Cust_get_ramp_tab */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
{
UWORD16 index_up, index_down,j, arfcn;
UWORD8 band;
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
for (j=0; j<16; j++)
{
a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
0x14;
}
#endif
}
/*-------------------------------------------------------*/
/* get_pwr_data */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq)
{
UWORD16 i,j;
UWORD16 arfcn;
UWORD8 band;
#if(ORDER2_TX_TEMP_CAL==1)
WORD16 pwr_data;
#else
UWORD16 pwr_data;
#endif
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
i = rf_band[band].tx.levels[txpwr].chan_cal_index;
j=0;
// get uncalibrated apc
pwr_data = rf_band[band].tx.levels[txpwr].apc;
while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
j++;
// channel calibrate apc
pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
// temperature compensate apc
{
T_TX_TEMP_CAL *pt;
pt = rf_band[band].tx.temp;
while ((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature)
pt++;
#if(ORDER2_TX_TEMP_CAL==1)
pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
if(pwr_data < 0) pwr_data = 0;
#else
pwr_data += pt->apc_calib;
#endif
}
return(pwr_data);
}
#endif
/*-------------------------------------------------------*/
/* Cust_Init_Layer1 */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Load and boot the DSP */
/* Initialize shared memory and L1 data structures */
/*-------------------------------------------------------*/
void Cust_Init_Layer1(void)
{
T_MMI_L1_CONFIG cfg;
// Get the current band configuration from the flash
#if (OP_WCP==1)
extern unsigned char ffs_GetBand();
cfg.std = ffs_GetBand();
#else // NO OP_WCP
// cfg.std = std;
cfg.std = STD;
#endif // OP_WCP
cfg.tx_pwr_code = 1;
// sleep management configuration
cfg.pwr_mngt = 0;
cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
#if (CODE_VERSION != SIMULATION)
cfg.dwnld = DWNLD; //external define from makefile
#endif
l1_initialize(&cfg);
get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
}
/*****************************************************************************************/
/*************************** TESTMODE functions **********************************/
/*****************************************************************************************/
/*------------------------------------------------------*/
/* madc_hex_2_physical */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Function to convert MAD hexadecimal */
/* values into physical values */
/*------------------------------------------------------*/
void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
{
WORD16 i;
UWORD16 y;
WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
//store raw ADC values
memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
// Convert Vbat [mV] : direct equation with slope and offset compensation
for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
/*Convert RF Temperature [Celsius]: binsearch into a table*/
y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
while((Smax-Smin) > 1 )
{
if(y < temperature[index].adc)
Smax=index;
else
Smin=index;
index = (Smax+Smin)/2;
}
adc.converted[ADC_RFTEMP] = temperature[index].temp;
for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
//store converted ADC values
memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
}
/*------------------------------------------------------*/
/* get_cal_from_nvmem */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Copy calibrated parameter to */
/* calibration structure in RAM */
/*------------------------------------------------------*/
void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{
}
/*------------------------------------------------------*/
/* save_cal_from_nvmem */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Copy calibrated structure from RAM */
/* into NV memory */
/*------------------------------------------------------*/
UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{
#if (OP_WCP == 1)
// FFS backup implementation an Avenger 2
// Request MPU-S to backup the FFS
// after full calibration of device
extern void ffs_backup(void);
ffs_backup();
#endif
return (0);
}
#if (TRACE_TYPE == 4)
/*------------------------------------------------------*/
/* l1_cst_l1_parameters */
/*------------------------------------------------------*/
/* Parameters : s: pointer on configuration string */
/* Return : nothing: global var are set */
/* Functionality : Set global L1 vars for dynamic trace */
/* and configuration */
/* */
/* This function is called when a CST message is sent */
/* from the Condat Panel. */
/*------------------------------------------------------*/
void l1_cst_l1_parameters(char *s)
{
/*
a sample command string can be:
L1_PARAMS=<1,2,3,4,5> or
L1_PARAMS=<1,23,3E32,4,5>
with n parameters (here: 5 params); n>=1
parameters are decoded as hexadecimal unsigned integers (UWORD16)
*/
UWORD8 uNParams = 0; /* Number of parameters */
UWORD32 aParam[10]; /* Parameters array */
UWORD8 uIndex = 0;
/* *** retrieve all parameters *** */
while (s[uIndex] != '<') uIndex++;
uIndex++;
aParam[0] = 0;
/* uIndex points on 1st parameter */
while (s[uIndex] != '>')
{
if (s[uIndex] == ',')
{
uNParams++;
aParam[uNParams] = 0;
}
else
{
/* uIndex points on a parameter char */
UWORD8 uChar = s[uIndex];
aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
if ((uChar>='0') && (uChar<='9'))
aParam[uNParams] += (uChar - '0'); /* retrieve value */
else if ((uChar>='A') && (uChar<='F'))
aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
else if ((uChar>='a') && (uChar<='f'))
aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
}
uIndex++; /* go to next char */
}
/* increment number of params */
uNParams++;
/* *** handle parameters *** */
/*
1st param: command type
2nd param: argument for command type
*/
switch (aParam[0])
{
case 0: /* Trace setting */
/* The 2nd parameter contains the trace bitmap*/
if (uNParams >=2)
trace_info.current_config->l1_dyn_trace = aParam[1];
else
trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
Trace_dyn_trace_change();
break;
default: /* ignore it */
break;
} // switch
}
#endif
#if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
(CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
(CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
(CHIPSET == 11) || (CHIPSET == 12))
/*-------------------------------------------------------*/
/* power_down_config() : temporary implementation !!! */
/*-------------------------------------------------------*/
/* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
/* clocks to be cut in BIG sleep */
/* Return : */
/* Functionality : set the l1s variables */
/* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
/* according to the desired mode. */
/*-------------------------------------------------------*/
void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
{
#if (OP_L1_STANDALONE == 1)
if(sleep_mode != NO_SLEEP)
#endif
{
l1_config.pwr_mngt = PWR_MNGT;
l1s.pw_mgr.mode_authorized = sleep_mode;
l1s.pw_mgr.clocks = clocks;
}
#if (OP_L1_STANDALONE == 0)
l1s.pw_mgr.enough_gaug = FALSE;
#endif
}
#endif
/* glowing,2004-06-16, import from M188 */
void layer1_em_get_rxlevqual(WORD32 *l1_rxlev_scell,WORD32 *l1_rxlev_dedic_sub,
WORD32 *l1_rxqual_dedic,WORD32 *l1_rxqual_dedic_sub)
{
/*
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.acc));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.nbr_meas));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.acc_sub));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_full));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub));
xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub));
*/
if(l1a_l1s_com.Scell_info.meas.nbr_meas != 0){
*l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(l1a_l1s_com.Scell_info.meas.nbr_meas);
}else{
*l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(4);
}
// xmzhou_trace_string_value("l1_rxlev_scell",(UINT32)(*l1_rxlev_scell));
if(l1a_l1s_com.Smeas_dedic.nbr_meas_sub !=0){
*l1_rxlev_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub);
}else{
*l1_rxlev_dedic_sub=0;
}
// xmzhou_trace_string_value("l1_rxlev_dedic_sub",(UINT32)(*l1_rxlev_dedic_sub));
if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full !=0){
*l1_rxqual_dedic=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_full)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full);
}else{
*l1_rxqual_dedic=0;
}
// xmzhou_trace_string_value("l1_rxqual_dedic",(UINT32)(*l1_rxqual_dedic));
if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub){
*l1_rxqual_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub);
}else{
*l1_rxqual_dedic_sub=0;
}
// xmzhou_trace_string_value("l1_rxqual_dedic_sub",(UINT32)(*l1_rxqual_dedic_sub));
}
void layer1_em_get_mode(WORD32 *l1_mode)
{
*l1_mode=l1a_l1s_com.mode;
}
/*glowing,2004-06-16, end of import */