line source
/*
* This FreeCalypso version of l1_cust.c is based on the LoCosto version;
* see ../cust1/l1_cust.c for the original.
*/
#include <string.h>
#include "config.h"
#include "sys_types.h"
#include "../../riviera/rv/general.h"
#include "../../nucleus/nucleus.h"
#include "../../nucleus/tm_defs.h"
#include "../../gpf/inc/cust_os.h"
#include "l1_confg.h"
#include "l1_const.h"
#include "../../bsp/ulpd.h"
#include "l1_types.h"
#include "l1_time.h"
#include "l1_trace.h"
#include "l1_macro.h"
#include "../../serial/serialswitch.h"
#include "../../bsp/abb+spi/abb.h"
#if CONFIG_INCLUDE_SIM
#include "../../bsp/sim.h"
#endif
#if TESTMODE
#include "l1tm_defty.h"
#endif
#if (AUDIO_TASK == 1)
#include "l1audio_const.h"
#include "l1audio_cust.h"
#include "l1audio_defty.h"
#endif
#if (L1_GTT == 1)
#include "l1gtt_const.h"
#include "l1gtt_defty.h"
#endif
#if (L1_MP3 == 1)
#include "l1mp3_defty.h"
#endif
#if (L1_MIDI == 1)
#include "l1midi_defty.h"
#endif
#include "l1_defty.h"
#include "l1_msgty.h"
#include "l1_tabs.h"
#include "l1_varex.h"
#include "l1_proto.h"
#if (VCXO_ALGO == 1)
#include "l1_ctl.h"
#endif
#if (RF_FAM == 61)
#include "drp_drive.h"
#include "tpudrv61.h"
#include "l1_rf61.h"
//#include "l1_rf61.c"
#endif
#if (RF_FAM == 60 )
#include "drp_drive.h"
#include "tpudrv60.h"
#include "l1_rf60.h"
//#include "l1_rf60.c"
//#include "rf60.h"
#endif
#if (RF_FAM == 43)
#include "tpudrv43.h"
#include "l1_rf43.h"
//#include "l1_rf43.c"
#endif
#if (RF_FAM == 35)
#include "tpudrv35.h"
#include "l1_rf35.h"
//#include "l1_rf35.c"
#endif
#if (RF_FAM == 12)
#include "tpudrv12.h"
#include "l1_rf12.h"
//#include "l1_rf12.c"
#endif
#if (RF_FAM == 10)
#include "tpudrv10.h"
#include "l1_rf10.h"
//#include "l1_rf10.c"
#endif
#if (RF_FAM == 8)
#include "tpudrv8.h"
#include "l1_rf8.h"
//#include "l1_rf8.c"
#endif
#if (RF_FAM == 2)
#include "l1_rf2.h"
//#include "l1_rf2.c"
#endif
#if (DRP_FW_EXT == 1)
#include "l1_drp_inc.h"
#include "l1_ver.h"
#endif
/*
* FreeCalypso change: l1_rf12.c is now a separate compilation unit,
* so we need to extern the data objects defined therein.
*/
extern T_RF rf;
extern T_RF_BAND rf_band[GSM_BANDS];
extern const T_RF_BAND rf_850, rf_900, rf_1800, rf_1900;
extern UWORD16 abb[ABB_TABLE_SIZE];
extern UWORD16 AGC_TABLE[AGC_TABLE_SIZE];
extern T_ADC adc;
extern T_ADCCAL adc_cal;
extern T_TEMP temperature[TEMP_TABLE_SIZE];
/* FreeCalypso configuration */
#define STD DUALEXT
// Nucleus functions
extern INT TMD_Timer_State;
extern UWORD32 TMD_Timer; // for big sleep
extern UWORD32 TCD_Priority_Groups;
extern VOID *TCD_Current_Thread;
extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
extern TC_PROTECT TCD_System_Protect;
#define FFS_WORKAROUND 0
#if 1 // (FFS_WORKAROUND == 1)
#include "../../services/ffs/ffs.h"
#else
/* typedef signed int int32;
typedef signed char effs_t;*/
typedef signed int filesize_t;
effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
#if (DRP_FW_EXT == 0)
effs_t ffs_fread(const char *name, void *addr, filesize_t size);
#endif
#endif
// Import band configuration from Flash module (need to replace by an access function)
//extern UWORD8 std;
extern T_L1_CONFIG l1_config;
extern T_L1S_GLOBAL l1s;
#if 0 //(OP_L1_STANDALONE == 0)
extern SYS_BOOL cama_sleep_status(void);
#endif
#if (CODE_VERSION != SIMULATION)
// Import serial switch configuration
#if (CHIPSET == 12)
extern char ser_cfg_info[3];
#else
extern char ser_cfg_info[2];
#endif
#endif
#if(REL99 && FF_PRF)
T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
UWORD8 number_uplink_timeslot,
T_TX_LEVEL *p_tx_level);
#endif
void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
void config_rf_rw_band(char type, UWORD8 read);
void config_rf_read(char type);
void config_rf_write(char type);
#if (RF_FAM == 61)
#include "drp_api.h"
extern T_DRP_SW_DATA drp_sw_data_init;
extern T_DRP_SW_DATA drp_sw_data_calib;
extern T_DRP_SW_DATA drp_sw_data_calib_saved;
#endif
enum {
RF_ID = 0,
ADC_ID = 1
};
#if (L1_FF_MULTIBAND == 0) && !defined(RUN_INT_RAM)
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Defines the location of rf-struct */
/* for each std. */
/*-------------------------------------------------------*/
//omaps00090550 #83 warinng removal
const T_BAND_CONFIG band_config[] =
{ /*ffs name, default addr, max carrier, min tx pwr */
{"",(T_RF_BAND *) 0,0,0},//undefined
{"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
{"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
{"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
{"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
#if (RF_FAM == 10)
{"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
#endif
{"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
};
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Defines the indices into band_config */
/* for each std. */
/*-------------------------------------------------------*/
const T_STD_CONFIG std_config[] =
{
/* band1 index, band2 index, txpwr turning point, first arfcn*/
{ 0, 0, 0, 0 }, // std = 0 not used
{ BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
{ BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
{ BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
{ BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
{ BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
{ BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
{ BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
#if (RF_FAM == 10)
{ BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
#else
{ BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
#endif
};
#endif //if (L1_FF_MULTIBAND == 0)
#if (L1_FF_MULTIBAND == 0) && defined(RUN_INT_RAM)
extern const T_BAND_CONFIG band_config[];
extern const T_STD_CONFIG std_config[];
#endif
/*-------------------------------------------------------*/
/* Prototypes of external functions used in this file. */
/*-------------------------------------------------------*/
void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
#if (L1_FF_MULTIBAND == 0)
WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
#endif
#ifndef RUN_FLASH
/*-------------------------------------------------------*/
/* Cust_recover_Os() */
/*-------------------------------------------------------*/
/* */
/* Description: adjust OS from sleep duration */
/* ------------ */
/* This function fix the : */
/* - system clock */
/* - Nucleus timers */
/* - xxxxxx (customer dependant) */
/*-------------------------------------------------------*/
UWORD8 Cust_recover_Os(void)
{
#if (CODE_VERSION != SIMULATION)
if (l1_config.pwr_mngt == PWR_MNGT)
{
UWORD32 current_system_clock;
/***************************************************/
// Fix System clock and Nucleus Timers if any.... */
/***************************************************/
// Fix System clock ....
current_system_clock = NU_Retrieve_Clock();
current_system_clock += l1s.pw_mgr.sleep_duration;
NU_Set_Clock(current_system_clock);
// Fix Nucleus timer (if needed) ....
if (TMD_Timer_State == TM_ACTIVE)
{
TMD_Timer -= l1s.pw_mgr.sleep_duration;
if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
}
/***************************************************/
// Cust dependant part ... */
/***************************************************/
//.............
//.............
//..............
return(TRUE);
}
#endif
return(TRUE); //omaps00090550
}
/*-------------------------------------------------------*/
/* Cust_check_system() */
/*-------------------------------------------------------*/
/* */
/* Description: */
/* ------------ */
/* GSM 1.5 : */
/* - authorize UWIRE clock to be stopped */
/* and write value in l1s.pw_mgr.modules_status. */
/* - authorize ARMIO clock to be stopped if the light is */
/* off and write value in l1s.pw_mgr.modules_status. */
/* - check if SIM clock have been stopped */
/* before allowing DEEP SLEEP. */
/* - check if UARTs are ready to enter deep sleep */
/* - choose the sleep mode */
/* */
/* Return: */
/* ------- */
/* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
/*-------------------------------------------------------*/
UWORD8 Cust_check_system(void)
{
#if (CODE_VERSION != SIMULATION)
if (l1_config.pwr_mngt == PWR_MNGT)
{
#if (L2_L3_SIMUL == 0)
// Forbid deep sleep if the light is on
/* FreeCalypso change: this LT_Status() function is defunct */
#if 0
if(LT_Status())
{
//cut ARMIO and UWIRE clocks in big sleep
l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
return(FRAME_STOP); // BIG sleep
}
#endif
#if (OP_L1_STANDALONE == 0)
// Forbid deep sleep if the camera is working
/* FreeCalypso change: no camera */
#if 0
if(!cama_sleep_status())
{
l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA;
return(FRAME_STOP); // BIG sleep
}
#endif
// Forbid deep sleep if the SIM and UARTs not ready
// FC note: this call to SIM_SleepStatus() *is* present in the Leonardo object
#if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO)
// Forbid deep sleep if the SIM and UARTs not ready
if(SIM_SleepStatus())
#endif
{
#endif
#endif
if(SER_UartSleepStatus())
{
return(CLOCK_STOP); // DEEP sleep
}
else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART;
#if (L2_L3_SIMUL == 0)
#if (OP_L1_STANDALONE == 0)
}
// Forbid deep sleep if the SIM and UARTs not ready
#if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO)
else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
#endif
#endif
#endif
// cut ARMIO and UWIRE clocks in big sleep
l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
return(FRAME_STOP); // BIG sleep
}
#else // Simulation part
return(CLOCK_STOP); // DEEP sleep
#endif
return(CLOCK_STOP); // omaps00090550
}
#endif /* !RUN_FLASH */
#ifndef RUN_INT_RAM
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Read the RF configuration, tables etc. */
/* from FFS files. */
/*-------------------------------------------------------*/
//omaps00090550 #83-d warnimg removal
static const T_CONFIG_FILE config_files_common[] =
{
#if (CODE_VERSION != SIMULATION)
// The first char is NOT part of the filename. It is used for
// categorizing the ffs file contents:
// f=rf-cal, F=rf-config,
// t=tx-cal, T=tx-config,
// r=rx-cal, R=rx-config,
// s=sys-cal, S=sys-config,
"f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
"F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
#if (VCXO_ALGO == 1)
"F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
#else
"F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
#endif
"R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16),
"R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
"R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
"s/sys/adccal", &adc_cal, sizeof(adc_cal),
"S/sys/abb", &abb, sizeof(abb),
"S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
#if (RF_FAM ==61)
"S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper),
#if (DRP_FW_EXT == 0)
"S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib),
#endif
#endif
#endif
NULL, 0, 0 // terminator
};
/*-------------------------------------------------------*/
/* Parameters: none */
/* Return: none */
/* Functionality: Read the RF configurations for */
/* each band from FFS files. These files */
/* are defined for one band, and and used */
/* for all bands. */
/*-------------------------------------------------------*/
//omaps00090550 #83 warning removal
static const T_CONFIG_FILE config_files_band[] =
{
// The first char is NOT part of the filename. It is used for
// categorizing the ffs file contents:
// f=rf-cal, F=rf-config,
// t=tx-cal, T=tx-config,
// r=rx-cal, R=rx-config,
// s=sys-cal, S=sys-config,
// generic for all bands
// band[0] is used as template for all bands.
"t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
"t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
"t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
"T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
"r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
"R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
"r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
NULL, 0, 0 // terminator
};
#if CONFIG_TARGET_PIRELLI
extern int pirelli_cal_fread(const char *name, void *userbuf, T_FFS_SIZE size);
#define cal_fread pirelli_cal_fread
#else
#define cal_fread ffs_file_read
#endif
void config_ffs_read(char type)
{
config_rf_read(type);
config_rf_rw_band(type, 1);
}
void config_ffs_write(char type)
{
config_rf_write(type);
config_rf_rw_band(type, 0);
}
void config_rf_read(char type)
{
const T_CONFIG_FILE *file = config_files_common;
while (file->name != NULL)
{
if (type == '*' || type == file->name[0]) {
cal_fread(&file->name[1], file->addr, file->size);
}
file++;
}
}
void config_rf_write(char type)
{
const T_CONFIG_FILE *file = config_files_common;
while (file->name != NULL)
{
if (type == '*' || type == file->name[0]) {
ffs_fwrite(&file->name[1], file->addr, file->size);
}
file++;
}
}
void config_rf_rw_band(char type, UWORD8 read)
{
const T_CONFIG_FILE *f1 = config_files_band;
UWORD8 i;
WORD32 offset;
char name[64];
char *p;
#if (L1_FF_MULTIBAND == 0)
UWORD8 std = l1_config.std.id;
#endif
#if FFS_WORKAROUND == 1
struct stat_s stat;
UWORD16 time;
#endif
#if (L1_FF_MULTIBAND == 0)
for (i=0; i< GSM_BANDS; i++)
{
if(std_config[std].band[i] !=0 )
{
#else
for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
{
#endif /*if (L1_FF_MULTIBAND == 0) */
f1 = &config_files_band[0];
while (f1->name != NULL)
{
offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
p = ((char *) &rf_band[i]) + offset;
if (type == '*' || type == f1->name[0])
{
strcpy(name, &f1->name[1]);
strcat(name, ".");
#if (L1_FF_MULTIBAND == 0)
strcat(name, band_config[std_config[std].band[i]].name);
#else
strcat(name, multiband_rf[i].name);
#endif /*if (L1_FF_MULTIBAND == 0)*/
if (read == 1)
cal_fread(name, p, f1->size);
else //write == 0
{
ffs_fwrite(name, p, f1->size);
// wait until ffs write has finished
#if FFS_WORKAROUND == 1
stat.inode = 0;
time = 0;
do {
rvf_delay(10); // in milliseconds
time += 10;
ffs_stat(name, &stat);
} while (stat.inode == 0 && time < 500);
#endif
}
}
f1++;
}
}
#if (L1_FF_MULTIBAND == 0)
}
#endif
}
/*-------------------------------------------------------*/
/* Cust_init_std() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Init Standard variable configuration */
/*-------------------------------------------------------*/
void Cust_init_std(void)
#if (L1_FF_MULTIBAND == 0)
{
UWORD8 std = l1_config.std.id;
UWORD8 band1, band2;
T_RF_BAND *pt1, *pt2;
band1 = std_config[std].band[0];
band2 = std_config[std].band[1];
//get these from std
pt1 = band_config[band1].addr;
pt2 = band_config[band2].addr;
// copy rf-struct from default flash to ram
memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
if(std_config[std].band[1] != BAND_NONE )
memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
// Read all RF and system configuration from FFS *before* we copy any of
// the rf structure variables to other places, like L1.
config_ffs_read('*');
l1_config.std.first_radio_freq = std_config[std].first_arfcn;
if(band2!=0)
l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
else
l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
// if band2 is not used it is initialised with zeros
l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
if(band2!=0)
l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
l1_config.std.cal_freq1_band1 = 0;
l1_config.std.cal_freq1_band2 = 0;
l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
// init variable indicating which radio bands are supported by the chosen RF
l1_config.std.radio_band_support = rf.radio_band_support;
//TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration
// on a need basis ?
}
#else
{
UWORD8 i;
for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
{
switch(multiband_rf[i].gsm_band_identifier)
{
case RF_GSM900:
rf_band[i]=rf_900;
break;
case RF_GSM850:
rf_band[i]=rf_850;
break;
case RF_DCS1800:
rf_band[i]=rf_1800;
break;
case RF_PCS1900:
rf_band[i]=rf_1900;
break;
default:
break;
}
}
config_ffs_read('*');
}
#endif // if (L1_FF_MULTIBAND == 0)
/*-------------------------------------------------------*/
/* Cust_init_params() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Init RF dependent paramters (AGC, TX) */
/*-------------------------------------------------------*/
void Cust_init_params(void)
{
#if (CODE_VERSION==SIMULATION)
extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
#else
l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
#endif
// Convert SYNTH_SETUP_TIME into SPLIT.
// We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
TA_MAX -
l1_config.params.tx_synth_setup_time -
EPSILON_OFFS;
// TX duration = ramp up time + burst duration (data + tail bits)
l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
// time for the end of RX and TX TPU scenarios
l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
// FB26 anchoring time is computed backward to leave only 6 qbit margin between
// FB26 window and next activity (RX time tracking).
// This margin is used as follow:
// Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
// Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
// ---------
// Total: 3 qbit
l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
#if (CODE_VERSION == SIMULATION)
// simulator: end of scenario not included in window (no serialization)
1 -
#else
// RF dependent end of RX TPU scenario
l1_config.params.rx_tpu_scenario_ending -
#endif
EPSILON_SYNC -
TPU_SLEEP_LOAD -
SERV_OFFS_REST_LOAD -
FB26_ACQUIS_DURATION -
PROVISION_TIME +
TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
PROVISION_TIME -
l1_config.params.rx_synth_setup_time -
EPSILON_OFFS;
l1_config.params.guard_bits = rf.tx.guard_bits;
l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
l1_config.params.low_agc = rf.rx.agc.low_agc;
l1_config.params.high_agc = rf.rx.agc.high_agc;
l1_config.params.il_min = IL_MIN;
l1_config.params.fixed_txpwr = FIXED_TXPWR;
l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation
l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
l1_config.params.psi_st = rf.afc.psi_st;
l1_config.params.psi_st_32 = rf.afc.psi_st_32;
l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
#if (CODE_VERSION == SIMULATION)
#if (VCXO_ALGO == 1)
l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
#endif
#else
#if (VCXO_ALGO == 1)
l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
#if (NEW_SNR_THRESHOLD == 0)
l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
#else
l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD;
#endif /* NEW_SNR_THRESHOLD */
l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
#endif
#endif
#if DCO_ALGO
#if (RF_FAM == 10)
// Enable DCO algorithm for direct conversion RFs
l1_config.params.dco_enabled = TRUE;
#else
l1_config.params.dco_enabled = FALSE;
#endif
#endif
#if (ANALOG == 1)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
#endif
#if (ANALOG == 2)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
#endif
#if (ANALOG == 3)
l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0
l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset
l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR
l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset
l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
#endif
#if (RF_FAM == 61)
l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2];
l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1];
l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2];
#endif
#if (ANALOG == 11)
l1_config.params.vulgain = abb[ABB_VULGAIN];
l1_config.params.vdlgain = abb[ABB_VDLGAIN];
l1_config.params.sidetone = abb[ABB_SIDETONE];
l1_config.params.ctrl1 = abb[ABB_CTRL1];
l1_config.params.ctrl2 = abb[ABB_CTRL2];
l1_config.params.ctrl3 = abb[ABB_CTRL3];
l1_config.params.ctrl4 = abb[ABB_CTRL4];
l1_config.params.ctrl5 = abb[ABB_CTRL5];
l1_config.params.ctrl6 = abb[ABB_CTRL6];
l1_config.params.popauto = abb[ABB_POPAUTO];
l1_config.params.outen1 = abb[ABB_OUTEN1];
l1_config.params.outen2 = abb[ABB_OUTEN2];
l1_config.params.outen3 = abb[ABB_OUTEN3];
l1_config.params.aulga = abb[ABB_AULGA];
l1_config.params.aurga = abb[ABB_AURGA];
#endif
}
#endif /* !RUN_INT_RAM */
#ifndef RUN_FLASH
/************************************/
/* Automatic Gain Control */
/************************************/
/*-------------------------------------------------------*/
/* Cust_get_agc_from_IL() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : returns agc value */
/*-------------------------------------------------------*/
WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val)
{
UWORD16 agc_index_temp;
// radio_freq currently not used
// this parameter is passed in order to allow band dependent tables for specific RFs
// (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq));
agc_index= agc_index_temp>>1;
if (agc_index > 120)
agc_index = 120; // Clip agc_index
switch (table_id)
{
case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]);
case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]);
case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]);
}
return (0);//omaps00090550
}
/*-------------------------------------------------------*/
/* Cust_get_agc_band */
/*-------------------------------------------------------*/
/* Parameters : radio_freq */
/* Return : band number */
/* Functionality : Computes the band for RF calibration */
/*-------------------------------------------------------*/
/*---------------------------------------------*/
#if (CODE_VERSION == SIMULATION)
UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
#else
UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
#endif
{
// WORD32 i =0 ; //omaps00090550
UWORD8 band_number;
for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++)
{
if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound)
return(band_number);
}
// Should never happen!
return(0);
}
#if (L1_FF_MULTIBAND == 0)
/*-------------------------------------------------------*/
/* Cust_is_band_high */
/*-------------------------------------------------------*/
/* Parameters : arfcn */
/* Return : 0 if low band */
/* 1 if high band */
/* Functionality : Generic function which return 1 if */
/* arfcn is in the high band */
/*-------------------------------------------------------*/
UWORD8 Cust_is_band_high(UWORD16 radio_freq)
{
UWORD16 max_carrier;
UWORD8 std = l1_config.std.id;
max_carrier = band_config[std_config[std].band[0]].max_carrier;
return(((radio_freq >= l1_config.std.first_radio_freq) &&
(radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_encode_delta2() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
{
WORD8 delta2_freq;
UWORD16 i;
UWORD16 arfcn;
#if (L1_FF_MULTIBAND == 0)
UWORD8 band;
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
#else
WORD8 band;
// Corrected for input being rf_freq and not l1_freq
arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif
i = Cust_get_agc_band(arfcn,band); //
delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
//temperature compensation
for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
{
if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
{
delta2_freq += rf_band[band].rx.temp[i].agc_calib;
break;
}
}
return(delta2_freq);
}
#if (L1_FF_MULTIBAND == 0)
#else
/*-------------------------------------------------------*/
/* l1ctl_get_g_magic() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq)
{
// Corrected for input being rf_freq and not l1_freq
return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic);
}
/*-------------------------------------------------------*/
/* l1ctl_get_lna_att() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq)
{
// The function is provided with rf_freq as input so
// convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band
return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att);
// return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att);
}
/*-------------------------------------------------------*/
/* l1ctl_encode_delta1() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
WORD8 l1ctl_encode_delta1(UWORD16 radio_freq)
{
return 0;
}
/*-------------------------------------------------------*/
/* l1ctl_encode_lna() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
void l1ctl_encode_lna( UWORD8 input_level,
UWORD8 *lna_state,
UWORD16 radio_freq)
{
/*** LNA Hysteresis is implemented as following :
|
On|---<>----+-------+
| | |
LNA | | |
| ^ v
| | |
| | |
Off| +-------+----<>-----
+--------------------------------
50 40 30 20 input_level /-dBm
THR_HIGH THR_LOW ***/
WORD8 band;
// Corrected for input to be rf_freq and not l1_freq
band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)];
if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ?
{
*lna_state = LNA_ON; // lna_off = FALSE
}
else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ?
{
*lna_state = LNA_OFF; // lna off = TRUE
}
}
UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq)
{
return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq);
}
#endif //if L1_FF_MULTIBAND == 0)
/************************************/
/* TX Management */
/************************************/
/*-------------------------------------------------------*/
/* Cust_get_ramp_tab */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality :
Notes:
Cal+
APCRAM : Dwn(15:11)Up(10:6)Forced(0)
Locosto:
APCRAM: Dwn(15:8)Up(7:0)
*/
/*-------------------------------------------------------*/
void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
{
UWORD16 index_up, index_down,j, arfcn;
#if (L1_FF_MULTIBAND == 0)
UWORD8 band;
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
#else
WORD8 band;
// Corrected for input being rf_freq and not l1_freq
arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif //if( L1_FF_MULTIBAND == 0)
index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
for (j=0; j<16; j++)
{
a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
0x14;
}
#endif
#if (RF_FAM == 61)
// 20 Coeff each 8 (RampDown) + 8 (RampUp)
for (j=0; j<20; j++)
{
a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) |
((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ;
}
#endif
}
/*-------------------------------------------------------*/
/* get_pwr_data */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3) || (RF_FAM == 61))
UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq
#if (REL99 && FF_PRF)
, UWORD8 number_uplink_timeslot
#endif
)
{
UWORD16 i,j;
UWORD16 arfcn;
T_TX_LEVEL *a_tx_levels;
#if (APC_VBAT_COMP == 1)
static UWORD16 apc_max_value = APC_MAX_VALUE;
#endif
#if(ORDER2_TX_TEMP_CAL==1)
WORD16 pwr_data;
#else
UWORD16 pwr_data;
#endif
#if (L1_FF_MULTIBAND == 0)
UWORD8 band;
band = Cust_is_band_high(radio_freq);
arfcn = Convert_l1_radio_freq(radio_freq);
#else
WORD8 band;
// Corrected for input being rf_freq and not l1_freq
arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif //if( L1_FF_MULTIBAND == 0)
// band = Cust_is_band_high(radio_freq);
// arfcn = Convert_l1_radio_freq(radio_freq);
a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure
#if REL99
#if FF_PRF
// uplink power reduction feature which decrease power level in case of uplink multislot
a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels);
#endif
#endif
// get uncalibrated apc
pwr_data = a_tx_levels->apc;
i = a_tx_levels->chan_cal_index; // get index for channel compensation
j=0;
while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
j++;
// channel calibrate apc
pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
// temperature compensate apc
{
T_TX_TEMP_CAL *pt;
pt = rf_band[band].tx.temp;
while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1)))
pt++;
#if(ORDER2_TX_TEMP_CAL==1)
pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
if(pwr_data < 0) pwr_data = 0;
#else
pwr_data += pt->apc_calib;
#endif
}
// Vbat compensate apc
#if (APC_VBAT_COMP == 1)
if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD)
apc_max_value = APC_MAX_VALUE_LOW_BAT;
else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD)
apc_max_value = APC_MAX_VALUE;
// else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and
// VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one
if (pwr_data > apc_max_value)
pwr_data = apc_max_value;
#endif // APC_VBAT_COMP == 1
return(pwr_data);
}
#endif
#if(REL99 && FF_PRF)
/*-------------------------------------------------------*/
/* Cust_get_uplink_apc_power_reduction */
/*-------------------------------------------------------*/
/* Parameters : */
/* - frenquency band */
/* - modulation type */
/* - number of uplink timeslot */
/* - pointer to radio power control structure */
/* Return : */
/* - pointer to radio power control structure */
/* */
/* Functionality : This function returns a pointer to */
/* the radio power control structure after power */
/* reduction processing. */
/* Depending of the number of uplink timeslot, the */
/* analogue power control (apc) value can be reduced */
/* in order to limit effect of terminal heat */
/* dissipation due to power amplifier. */
/*-------------------------------------------------------*/
T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
UWORD8 number_uplink_timeslot,
T_TX_LEVEL *p_tx_level)
{
T_TX_LEVEL *p_power_reduction_tx_level;
#if TESTMODE
if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE))
return p_tx_level ; // return without any power reduction
#endif
if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT))
{
number_uplink_timeslot--; // index start from 0
}
else
{
return p_tx_level; // abnormal case we do not apply any power reduction
}
p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]);
// We select the lowest power level in order to apply power reduction
#if (CODE_VERSION != SIMULATION)
if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power
#else
if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse
#endif
return p_power_reduction_tx_level;
else
return p_tx_level;
}
#endif
#endif /* !RUN_FLASH */
#ifndef RUN_INT_RAM
/*-------------------------------------------------------*/
/* Cust_Init_Layer1 */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Load and boot the DSP */
/* Initialize shared memory and L1 data structures */
/*-------------------------------------------------------*/
void Cust_Init_Layer1(void)
{
T_MMI_L1_CONFIG cfg;
// Get the current band configuration from the flash
#if (OP_WCP==1) && (OP_L1_STANDALONE!=1)
extern unsigned char ffs_GetBand();
cfg.std = ffs_GetBand();
#else // NO OP_WCP
// cfg.std = std;
cfg.std = STD;
#endif // OP_WCP
cfg.tx_pwr_code = 1;
// sleep management configuration
#if(L1_POWER_MGT == 0)
cfg.pwr_mngt = 0;
cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
#endif
#if(L1_POWER_MGT == 1)
cfg.pwr_mngt = 1;
cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode
cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
#endif
#if (CODE_VERSION != SIMULATION)
cfg.dwnld = DWNLD; //external define from makefile
#endif
l1_initialize(&cfg);
/*
* The following conditioned-out line appears in the LoCosto version,
* but not in the Leonardo binary object. Investigation has revealed
* that the change is malicious: it disables ALL useful L1 traces.
*/
#if 0
//add below line for CSR 174476
trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init
#endif
get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
}
#endif /* !RUN_INT_RAM */
/*****************************************************************************************/
/*************************** TESTMODE functions **********************************/
/*****************************************************************************************/
#ifndef RUN_FLASH
/*------------------------------------------------------*/
/* madc_hex_2_physical */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Function to convert MAD hexadecimal */
/* values into physical values */
/*------------------------------------------------------*/
void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
{
WORD16 i;
UWORD16 y;
WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
//store raw ADC values
memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
// Convert Vbat [mV] : direct equation with slope and offset compensation
for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
/*Convert RF Temperature [Celsius]: binsearch into a table*/
y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
while((Smax-Smin) > 1 )
{
if(y < temperature[index].adc)
Smax=index;
else
Smin=index;
index = (Smax+Smin)/2;
}
adc.converted[ADC_RFTEMP] = temperature[index].temp;
for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
//store converted ADC values
memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
}
#endif /* !RUN_FLASH */
#ifndef RUN_INT_RAM
/*------------------------------------------------------*/
/* get_cal_from_nvmem */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Copy calibrated parameter to */
/* calibration structure in RAM */
/*------------------------------------------------------*/
void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{
}
/*------------------------------------------------------*/
/* save_cal_from_nvmem */
/*------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : Copy calibrated structure from RAM */
/* into NV memory */
/*------------------------------------------------------*/
UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{
return (0);
}
#endif /* !RUN_INT_RAM */
#if (TRACE_TYPE == 4) && !defined(RUN_FLASH)
/*------------------------------------------------------*/
/* l1_cst_l1_parameters */
/*------------------------------------------------------*/
/* Parameters : s: pointer on configuration string */
/* Return : nothing: global var are set */
/* Functionality : Set global L1 vars for dynamic trace */
/* and configuration */
/* */
/* This function is called when a CST message is sent */
/* from the Condat Panel. */
/*------------------------------------------------------*/
void l1_cst_l1_parameters(char *s)
{
/*
a sample command string can be:
L1_PARAMS=<1,2,3,4,5> or
L1_PARAMS=<1,23,3E32,4,5>
with n parameters (here: 5 params); n>=1
parameters are decoded as hexadecimal unsigned integers (UWORD16)
*/
UWORD8 uNParams = 0; /* Number of parameters */
UWORD32 aParam[10]; /* Parameters array */
UWORD8 uIndex = 0;
/* *** retrieve all parameters *** */
while (s[uIndex] != '<') uIndex++;
uIndex++;
aParam[0] = 0;
/* uIndex points on 1st parameter */
while (s[uIndex] != '>')
{
if (s[uIndex] == ',')
{
uNParams++;
aParam[uNParams] = 0;
}
else
{
/* uIndex points on a parameter char */
UWORD8 uChar = s[uIndex];
aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
if ((uChar>='0') && (uChar<='9'))
aParam[uNParams] += (uChar - '0'); /* retrieve value */
else if ((uChar>='A') && (uChar<='F'))
aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
else if ((uChar>='a') && (uChar<='f'))
aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
}
uIndex++; /* go to next char */
}
/* increment number of params */
uNParams++;
/* *** handle parameters *** */
/*
1st param: command type
2nd param: argument for command type
*/
switch (aParam[0])
{
case 0: /* Trace setting */
/* The 2nd parameter contains the trace bitmap*/
if (uNParams >=2)
trace_info.current_config->l1_dyn_trace = aParam[1];
else
trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
Trace_dyn_trace_change();
break;
default: /* ignore it */
break;
} // switch
}
#endif
#if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
(CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
(CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
(CHIPSET == 11) || (CHIPSET == 12))
#ifndef RUN_FLASH
/*-------------------------------------------------------*/
/* power_down_config() : temporary implementation !!! */
/*-------------------------------------------------------*/
/* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
/* clocks to be cut in BIG sleep */
/* Return : */
/* Functionality : set the l1s variables */
/* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
/* according to the desired mode. */
/*-------------------------------------------------------*/
void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
{
#if (OP_L1_STANDALONE == 1)
if(sleep_mode != NO_SLEEP)
#endif
{
l1_config.pwr_mngt = PWR_MNGT;
l1s.pw_mgr.mode_authorized = sleep_mode;
l1s.pw_mgr.clocks = clocks;
}
#if (OP_L1_STANDALONE == 0)
l1s.pw_mgr.enough_gaug = FALSE;
#endif
}
#endif
#endif