comparison libtwamr/qgain795.c @ 376:2aa98051d445

libtwamr: integrate qgain795.c
author Mychaela Falconia <falcon@freecalypso.org>
date Mon, 06 May 2024 04:20:11 +0000
parents
children
comparison
equal deleted inserted replaced
375:1d2b39027b70 376:2aa98051d445
1 /*
2 ********************************************************************************
3 *
4 * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001
5 * R99 Version 3.3.0
6 * REL-4 Version 4.1.0
7 *
8 ********************************************************************************
9 *
10 * File : qgain795.c
11 * Purpose : pitch and codebook gain quantization for MR795
12 *
13 ********************************************************************************
14 */
15
16 /*
17 ********************************************************************************
18 * MODULE INCLUDE FILE AND VERSION ID
19 ********************************************************************************
20 */
21 #include "namespace.h"
22 #include "qgain795.h"
23
24 /*
25 ********************************************************************************
26 * INCLUDE FILES
27 ********************************************************************************
28 */
29 #include "typedef.h"
30 #include "basic_op.h"
31 #include "oper_32b.h"
32 #include "no_count.h"
33 #include "cnst.h"
34 #include "log2.h"
35 #include "pow2.h"
36 #include "sqrt_l.h"
37 #include "g_adapt.h"
38 #include "calc_en.h"
39 #include "q_gain_p.h"
40 #include "mac_32.h"
41 #include "gains_tab.h"
42
43 /*
44 ********************************************************************************
45 * LOCAL PROGRAM CODE
46 ********************************************************************************
47 */
48
49 /*************************************************************************
50 *
51 * FUNCTION: MR795_gain_code_quant3
52 *
53 * PURPOSE: Pre-quantization of codebook gains, given three possible
54 * LTP gains (using predicted codebook gain)
55 *
56 *************************************************************************/
57 static void
58 MR795_gain_code_quant3(
59 Word16 exp_gcode0, /* i : predicted CB gain (exponent), Q0 */
60 Word16 gcode0, /* i : predicted CB gain (norm.), Q14 */
61 Word16 g_pitch_cand[], /* i : Pitch gain candidates (3), Q14 */
62 Word16 g_pitch_cind[], /* i : Pitch gain cand. indices (3), Q0 */
63 Word16 frac_coeff[], /* i : coefficients (5), Q15 */
64 Word16 exp_coeff[], /* i : energy coefficients (5), Q0 */
65 /* coefficients from calc_filt_ener()*/
66 Word16 *gain_pit, /* o : Pitch gain, Q14 */
67 Word16 *gain_pit_ind, /* o : Pitch gain index, Q0 */
68 Word16 *gain_cod, /* o : Code gain, Q1 */
69 Word16 *gain_cod_ind, /* o : Code gain index, Q0 */
70 Word16 *qua_ener_MR122, /* o : quantized energy error, Q10 */
71 /* (for MR122 MA predictor update) */
72 Word16 *qua_ener /* o : quantized energy error, Q10 */
73 /* (for other MA predictor update) */
74 )
75 {
76 const Word16 *p;
77 Word16 i, j, cod_ind, pit_ind;
78 Word16 e_max, exp_code;
79 Word16 g_pitch, g2_pitch, g_code, g2_code_h, g2_code_l;
80 Word16 g_pit_cod_h, g_pit_cod_l;
81 Word16 coeff[5], coeff_lo[5];
82 Word16 exp_max[5];
83 Word32 L_tmp, L_tmp0, dist_min;
84
85 /*
86 * The error energy (sum) to be minimized consists of five terms, t[0..4].
87 *
88 * t[0] = gp^2 * <y1 y1>
89 * t[1] = -2*gp * <xn y1>
90 * t[2] = gc^2 * <y2 y2>
91 * t[3] = -2*gc * <xn y2>
92 * t[4] = 2*gp*gc * <y1 y2>
93 *
94 */
95
96 /* determine the scaling exponent for g_code: ec = ec0 - 10 */
97 exp_code = sub(exp_gcode0, 10);
98
99 /* calculate exp_max[i] = s[i]-1 */
100 exp_max[0] = sub(exp_coeff[0], 13); move16 ();
101 exp_max[1] = sub(exp_coeff[1], 14); move16 ();
102 exp_max[2] = add(exp_coeff[2], add(15, shl(exp_code, 1))); move16 ();
103 exp_max[3] = add(exp_coeff[3], exp_code); move16 ();
104 exp_max[4] = add(exp_coeff[4], add(exp_code,1)); move16 ();
105
106
107 /*-------------------------------------------------------------------*
108 * Find maximum exponent: *
109 * ~~~~~~~~~~~~~~~~~~~~~~ *
110 * *
111 * For the sum operation, all terms must have the same scaling; *
112 * that scaling should be low enough to prevent overflow. There- *
113 * fore, the maximum scale is determined and all coefficients are *
114 * re-scaled: *
115 * *
116 * e_max = max(exp_max[i]) + 1; *
117 * e = exp_max[i]-e_max; e <= 0! *
118 * c[i] = c[i]*2^e *
119 *-------------------------------------------------------------------*/
120
121 e_max = exp_max[0]; move16 ();
122 for (i = 1; i < 5; i++) /* implemented flattened */
123 {
124 move16(); test();
125 if (sub(exp_max[i], e_max) > 0)
126 {
127 e_max = exp_max[i]; move16 ();
128 }
129 }
130
131 e_max = add(e_max, 1); /* To avoid overflow */
132
133 for (i = 0; i < 5; i++) {
134 j = sub(e_max, exp_max[i]);
135 L_tmp = L_deposit_h(frac_coeff[i]);
136 L_tmp = L_shr(L_tmp, j);
137 L_Extract(L_tmp, &coeff[i], &coeff_lo[i]);
138 }
139
140
141 /*-------------------------------------------------------------------*
142 * Codebook search: *
143 * ~~~~~~~~~~~~~~~~ *
144 * *
145 * For each of the candiates LTP gains in g_pitch_cand[], the terms *
146 * t[0..4] are calculated from the values in the table (and the *
147 * pitch gain candidate) and summed up; the result is the mean *
148 * squared error for the LPT/CB gain pair. The index for the mini- *
149 * mum MSE is stored and finally used to retrieve the quantized CB *
150 * gain *
151 *-------------------------------------------------------------------*/
152
153 /* start with "infinite" MSE */
154 dist_min = MAX_32; move16 ();
155 cod_ind = 0; move16 ();
156 pit_ind = 0; move16 ();
157
158 /* loop through LTP gain candidates */
159 for (j = 0; j < 3; j++)
160 {
161 /* pre-calculate terms only dependent on pitch gain */
162 g_pitch = g_pitch_cand[j]; move16 ();
163 g2_pitch = mult(g_pitch, g_pitch);
164 L_tmp0 = Mpy_32_16( coeff[0], coeff_lo[0], g2_pitch);
165 L_tmp0 = Mac_32_16(L_tmp0, coeff[1], coeff_lo[1], g_pitch);
166
167 p = &qua_gain_code[0];
168 for (i = 0; i < NB_QUA_CODE; i++)
169 {
170 g_code = *p++; move16 (); /* this is g_fac Q11 */
171 p++; /* skip log2(g_fac) */
172 p++; /* skip 20*log10(g_fac) */
173
174 g_code = mult(g_code, gcode0);
175
176 L_tmp = L_mult (g_code, g_code);
177 L_Extract (L_tmp, &g2_code_h, &g2_code_l);
178
179 L_tmp = L_mult(g_code, g_pitch);
180 L_Extract (L_tmp, &g_pit_cod_h, &g_pit_cod_l);
181
182 L_tmp = Mac_32 (L_tmp0, coeff[2], coeff_lo[2],
183 g2_code_h, g2_code_l);
184 L_tmp = Mac_32_16(L_tmp, coeff[3], coeff_lo[3],
185 g_code);
186 L_tmp = Mac_32 (L_tmp, coeff[4], coeff_lo[4],
187 g_pit_cod_h, g_pit_cod_l);
188
189 /* store table index if MSE for this index is lower
190 than the minimum MSE seen so far; also store the
191 pitch gain for this (so far) lowest MSE */
192 test ();
193 if (L_sub(L_tmp, dist_min) < (Word32) 0)
194 {
195 dist_min = L_tmp; move32 ();
196 cod_ind = i; move16 ();
197 pit_ind = j; move16 ();
198 }
199 }
200 }
201
202 /*------------------------------------------------------------------*
203 * read quantized gains and new values for MA predictor memories *
204 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *
205 *------------------------------------------------------------------*/
206
207 /* Read the quantized gains */
208 p = &qua_gain_code[add (add (cod_ind, cod_ind), cod_ind)]; move16 ();
209 g_code = *p++; move16();
210 *qua_ener_MR122 = *p++; move16();
211 *qua_ener = *p; move16();
212
213 /*------------------------------------------------------------------*
214 * calculate final fixed codebook gain: *
215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *
216 * *
217 * gc = gc0 * g *
218 *------------------------------------------------------------------*/
219
220 L_tmp = L_mult(g_code, gcode0);
221 L_tmp = L_shr(L_tmp, sub(9, exp_gcode0));
222 *gain_cod = extract_h(L_tmp);
223 *gain_cod_ind = cod_ind; move16 ();
224 *gain_pit = g_pitch_cand[pit_ind]; move16 ();
225 *gain_pit_ind = g_pitch_cind[pit_ind]; move16 ();
226 }
227
228
229 /*************************************************************************
230 *
231 * FUNCTION: MR795_gain_code_quant_mod
232 *
233 * PURPOSE: Modified quantization of the MR795 codebook gain
234 *
235 * Uses pre-computed energy coefficients in frac_en[]/exp_en[]
236 *
237 * frac_en[0]*2^exp_en[0] = <res res> // LP residual energy
238 * frac_en[1]*2^exp_en[1] = <exc exc> // LTP residual energy
239 * frac_en[2]*2^exp_en[2] = <exc code> // LTP/CB innovation dot product
240 * frac_en[3]*2^exp_en[3] = <code code> // CB innovation energy
241 *
242 *************************************************************************/
243 static Word16
244 MR795_gain_code_quant_mod( /* o : index of quantization. */
245 Word16 gain_pit, /* i : pitch gain, Q14 */
246 Word16 exp_gcode0, /* i : predicted CB gain (exponent), Q0 */
247 Word16 gcode0, /* i : predicted CB gain (norm.), Q14 */
248 Word16 frac_en[], /* i : energy coefficients (4),
249 fraction part, Q15 */
250 Word16 exp_en[], /* i : energy coefficients (4),
251 eponent part, Q0 */
252 Word16 alpha, /* i : gain adaptor factor (>0), Q15 */
253 Word16 gain_cod_unq, /* i : Code gain (unquantized) */
254 /* (scaling: Q10 - exp_gcode0) */
255 Word16 *gain_cod, /* i/o: Code gain (pre-/quantized), Q1 */
256 Word16 *qua_ener_MR122, /* o : quantized energy error, Q10 */
257 /* (for MR122 MA predictor update) */
258 Word16 *qua_ener /* o : quantized energy error, Q10 */
259 /* (for other MA predictor update) */
260 )
261 {
262 const Word16 *p;
263 Word16 i, index, tmp;
264 Word16 one_alpha;
265 Word16 exp, e_max;
266 Word16 g2_pitch, g_code;
267 Word16 g2_code_h, g2_code_l;
268 Word16 d2_code_h, d2_code_l;
269 Word16 coeff[5], coeff_lo[5], exp_coeff[5];
270 Word32 L_tmp, L_t0, L_t1, dist_min;
271 Word16 gain_code;
272
273 /*
274 Steps in calculation of the error criterion (dist):
275 ---------------------------------------------------
276
277 underlined = constant; alp = FLP value of alpha, alpha = FIP
278 ----------
279
280
281 ExEn = gp^2 * LtpEn + 2.0*gp*gc[i] * XC + gc[i]^2 * InnEn;
282 ------------ ------ -- -----
283
284 aExEn= alp * ExEn
285 = alp*gp^2*LtpEn + 2.0*alp*gp*XC* gc[i] + alp*InnEn* gc[i]^2
286 -------------- ------------- ---------
287
288 = t[1] + t[2] + t[3]
289
290 dist = d1 + d2;
291
292 d1 = (1.0 - alp) * InnEn * (gcu - gc[i])^2 = t[4]
293 ------------------- ---
294
295 d2 = alp * (ResEn - 2.0 * sqrt(ResEn*ExEn) + ExEn);
296 --- ----- --- -----
297
298 = alp * (sqrt(ExEn) - sqrt(ResEn))^2
299 --- -----------
300
301 = (sqrt(aExEn) - sqrt(alp*ResEn))^2
302 ---------------
303
304 = (sqrt(aExEn) - t[0] )^2
305 ----
306
307 */
308
309 /*
310 * calculate scalings of the constant terms
311 */
312 gain_code = shl (*gain_cod, sub (10, exp_gcode0)); /* Q1 -> Q11 (-ec0) */
313 g2_pitch = mult (gain_pit, gain_pit); /* Q14 -> Q13 */
314 /* 0 < alpha <= 0.5 => 0.5 <= 1-alpha < 1, i.e one_alpha is normalized */
315 one_alpha = add (sub (32767, alpha), 1); /* 32768 - alpha */
316
317
318 /* alpha <= 0.5 -> mult. by 2 to keep precision; compensate in exponent */
319 tmp = extract_h (L_shl (L_mult (alpha, frac_en[1]), 1));
320 /* directly store in 32 bit variable because no further mult. required */
321 L_t1 = L_mult (tmp, g2_pitch); move16 ();
322 exp_coeff[1] = sub (exp_en[1], 15); move16 ();
323
324
325 tmp = extract_h (L_shl (L_mult (alpha, frac_en[2]), 1));
326 coeff[2] = mult (tmp, gain_pit); move16 ();
327 exp = sub (exp_gcode0, 10);
328 exp_coeff[2] = add (exp_en[2], exp); move16 ();
329
330
331 /* alpha <= 0.5 -> mult. by 2 to keep precision; compensate in exponent */
332 coeff[3] = extract_h (L_shl (L_mult (alpha, frac_en[3]), 1));
333 exp = sub (shl (exp_gcode0, 1), 7);
334 exp_coeff[3] = add (exp_en[3], exp); move16 ();
335
336
337 coeff[4] = mult (one_alpha, frac_en[3]); move16 ();
338 exp_coeff[4] = add (exp_coeff[3], 1); move16 ();
339
340
341 L_tmp = L_mult (alpha, frac_en[0]);
342 /* sqrt_l returns normalized value and 2*exponent
343 -> result = val >> (exp/2)
344 exp_coeff holds 2*exponent for c[0] */
345 /* directly store in 32 bit variable because no further mult. required */
346 L_t0 = sqrt_l_exp (L_tmp, &exp); /* normalization included in sqrt_l_exp */
347 move32 (); /* function result */
348 exp = add (exp, 47);
349 exp_coeff[0] = sub (exp_en[0], exp); move16 ();
350
351 /*
352 * Determine the maximum exponent occuring in the distance calculation
353 * and adjust all fractions accordingly (including a safety margin)
354 *
355 */
356
357 /* find max(e[1..4],e[0]+31) */
358 e_max = add (exp_coeff[0], 31);
359 for (i = 1; i <= 4; i++)
360 {
361 test ();
362 if (sub (exp_coeff[i], e_max) > 0)
363 {
364 e_max = exp_coeff[i]; move16 ();
365 }
366 }
367
368 /* scale c[1] (requires no further multiplication) */
369 tmp = sub (e_max, exp_coeff[1]);
370 L_t1 = L_shr(L_t1, tmp);
371
372 /* scale c[2..4] (used in Mpy_32_16 in the quantizer loop) */
373 for (i = 2; i <= 4; i++)
374 {
375 tmp = sub (e_max, exp_coeff[i]);
376 L_tmp = L_deposit_h(coeff[i]);
377 L_tmp = L_shr(L_tmp, tmp);
378 L_Extract(L_tmp, &coeff[i], &coeff_lo[i]);
379 }
380
381 /* scale c[0] (requires no further multiplication) */
382 exp = sub (e_max, 31); /* new exponent */
383 tmp = sub (exp, exp_coeff[0]);
384 L_t0 = L_shr (L_t0, shr (tmp, 1));
385 /* perform correction by 1/sqrt(2) if exponent difference is odd */
386 test (); logic16 ();
387 if ((tmp & 0x1) != 0)
388 {
389 L_Extract(L_t0, &coeff[0], &coeff_lo[0]);
390 L_t0 = Mpy_32_16(coeff[0], coeff_lo[0],
391 23170); /* 23170 Q15 = 1/sqrt(2)*/
392 }
393
394 /* search the quantizer table for the lowest value
395 of the search criterion */
396 dist_min = MAX_32; move32 ();
397 index = 0; move16 ();
398 p = &qua_gain_code[0]; move16 ();
399
400 for (i = 0; i < NB_QUA_CODE; i++)
401 {
402 g_code = *p++; move16 (); /* this is g_fac (Q11) */
403 p++; /* skip log2(g_fac) */
404 p++; /* skip 20*log10(g_fac) */
405 g_code = mult (g_code, gcode0);
406
407 /* only continue if gc[i] < 2.0*gc
408 which is equiv. to g_code (Q10-ec0) < gain_code (Q11-ec0) */
409 test ();
410 if (sub (g_code, gain_code) >= 0)
411 break;
412
413 L_tmp = L_mult (g_code, g_code);
414 L_Extract (L_tmp, &g2_code_h, &g2_code_l);
415
416 tmp = sub (g_code, gain_cod_unq);
417 L_tmp = L_mult (tmp, tmp);
418 L_Extract (L_tmp, &d2_code_h, &d2_code_l);
419
420 /* t2, t3, t4 */
421 L_tmp = Mac_32_16 (L_t1, coeff[2], coeff_lo[2], g_code);
422 L_tmp = Mac_32(L_tmp, coeff[3], coeff_lo[3], g2_code_h, g2_code_l);
423
424 L_tmp = sqrt_l_exp (L_tmp, &exp);
425 L_tmp = L_shr (L_tmp, shr (exp, 1));
426
427 /* d2 */
428 tmp = round (L_sub (L_tmp, L_t0));
429 L_tmp = L_mult (tmp, tmp);
430
431 /* dist */
432 L_tmp = Mac_32(L_tmp, coeff[4], coeff_lo[4], d2_code_h, d2_code_l);
433
434 /* store table index if distance measure for this
435 index is lower than the minimum seen so far */
436 test ();
437 if (L_sub (L_tmp, dist_min) < (Word32) 0)
438 {
439 dist_min = L_tmp; move16 ();
440 index = i; move16 ();
441 }
442 }
443
444 /*------------------------------------------------------------------*
445 * read quantized gains and new values for MA predictor memories *
446 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *
447 *------------------------------------------------------------------*/
448
449 /* Read the quantized gains */
450 p = &qua_gain_code[add (add (index, index), index)]; move16 ();
451 g_code = *p++; move16();
452 *qua_ener_MR122 = *p++; move16();
453 *qua_ener = *p; move16();
454
455 /*------------------------------------------------------------------*
456 * calculate final fixed codebook gain: *
457 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *
458 * *
459 * gc = gc0 * g *
460 *------------------------------------------------------------------*/
461
462 L_tmp = L_mult(g_code, gcode0);
463 L_tmp = L_shr(L_tmp, sub(9, exp_gcode0));
464 *gain_cod = extract_h(L_tmp);
465
466 return index;
467 }
468
469 /*
470 ********************************************************************************
471 * PUBLIC PROGRAM CODE
472 ********************************************************************************
473 */
474
475 /*************************************************************************
476 *
477 * FUNCTION: MR795_gain_quant
478 *
479 * PURPOSE: pitch and codebook quantization for MR795
480 *
481 *************************************************************************/
482 void
483 MR795_gain_quant(
484 GainAdaptState *adapt_st, /* i/o: gain adapter state structure */
485 Word16 res[], /* i : LP residual, Q0 */
486 Word16 exc[], /* i : LTP excitation (unfiltered), Q0 */
487 Word16 code[], /* i : CB innovation (unfiltered), Q13 */
488 Word16 frac_coeff[], /* i : coefficients (5), Q15 */
489 Word16 exp_coeff[], /* i : energy coefficients (5), Q0 */
490 /* coefficients from calc_filt_ener() */
491 Word16 exp_code_en, /* i : innovation energy (exponent), Q0 */
492 Word16 frac_code_en, /* i : innovation energy (fraction), Q15 */
493 Word16 exp_gcode0, /* i : predicted CB gain (exponent), Q0 */
494 Word16 frac_gcode0, /* i : predicted CB gain (fraction), Q15 */
495 Word16 L_subfr, /* i : Subframe length */
496 Word16 cod_gain_frac, /* i : opt. codebook gain (fraction),Q15 */
497 Word16 cod_gain_exp, /* i : opt. codebook gain (exponent), Q0 */
498 Word16 gp_limit, /* i : pitch gain limit */
499 Word16 *gain_pit, /* i/o: Pitch gain, Q14 */
500 Word16 *gain_cod, /* o : Code gain, Q1 */
501 Word16 *qua_ener_MR122, /* o : quantized energy error, Q10 */
502 /* (for MR122 MA predictor update) */
503 Word16 *qua_ener, /* o : quantized energy error, Q10 */
504 /* (for other MA predictor update) */
505 Word16 **anap /* o : Index of quantization */
506 /* (first gain pitch, then code pitch)*/
507 )
508 {
509 Word16 frac_en[4];
510 Word16 exp_en[4];
511 Word16 ltpg, alpha, gcode0;
512 Word16 g_pitch_cand[3]; /* pitch gain candidates Q14 */
513 Word16 g_pitch_cind[3]; /* pitch gain indices Q0 */
514 Word16 gain_pit_index;
515 Word16 gain_cod_index;
516 Word16 exp;
517 Word16 gain_cod_unq; /* code gain (unq.) Q(10-exp_gcode0) */
518
519
520 /* get list of candidate quantized pitch gain values
521 * and corresponding quantization indices
522 */
523 gain_pit_index = q_gain_pitch (MR795, gp_limit, gain_pit,
524 g_pitch_cand, g_pitch_cind);
525 move16 (); /* function result */
526
527 /*-------------------------------------------------------------------*
528 * predicted codebook gain *
529 * ~~~~~~~~~~~~~~~~~~~~~~~ *
530 * gc0 = 2^exp_gcode0 + 2^frac_gcode0 *
531 * *
532 * gcode0 (Q14) = 2^14*2^frac_gcode0 = gc0 * 2^(14-exp_gcode0) *
533 *-------------------------------------------------------------------*/
534 gcode0 = extract_l(Pow2(14, frac_gcode0)); /* Q14 */
535
536 /* pre-quantization of codebook gain
537 * (using three pitch gain candidates);
538 * result: best guess of pitch gain and code gain
539 */
540 MR795_gain_code_quant3(
541 exp_gcode0, gcode0, g_pitch_cand, g_pitch_cind,
542 frac_coeff, exp_coeff,
543 gain_pit, &gain_pit_index, gain_cod, &gain_cod_index,
544 qua_ener_MR122, qua_ener);
545
546 /* calculation of energy coefficients and LTP coding gain */
547 calc_unfilt_energies(res, exc, code, *gain_pit, L_subfr,
548 frac_en, exp_en, &ltpg);
549
550 /* run gain adaptor, calculate alpha factor to balance LTP/CB gain
551 * (this includes the gain adaptor update)
552 * Note: ltpg = 0 if frac_en[0] == 0, so the update is OK in that case
553 */
554 gain_adapt(adapt_st, ltpg, *gain_cod, &alpha);
555
556 /* if this is a very low energy signal (threshold: see
557 * calc_unfilt_energies) or alpha <= 0 then don't run the modified quantizer
558 */
559 test (); move16 (); test ();
560 if (frac_en[0] != 0 && alpha > 0)
561 {
562 /* innovation energy <cod cod> was already computed in gc_pred() */
563 /* (this overwrites the LtpResEn which is no longer needed) */
564 frac_en[3] = frac_code_en; move16 ();
565 exp_en[3] = exp_code_en; move16 ();
566
567 /* store optimum codebook gain in Q(10-exp_gcode0) */
568 exp = add (sub (cod_gain_exp, exp_gcode0), 10);
569 gain_cod_unq = shl (cod_gain_frac, exp);
570
571 /* run quantization with modified criterion */
572 gain_cod_index = MR795_gain_code_quant_mod(
573 *gain_pit, exp_gcode0, gcode0,
574 frac_en, exp_en, alpha, gain_cod_unq,
575 gain_cod, qua_ener_MR122, qua_ener); move16 (); /* function result */
576 }
577
578 *(*anap)++ = gain_pit_index; move16 ();
579 *(*anap)++ = gain_cod_index; move16 ();
580 }