FreeCalypso > hg > gsm-codec-lib
comparison libtwamr/calc_en.c @ 327:2df212a012af
libtwamr: integrate calc_en.c
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 18 Apr 2024 20:28:33 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
326:bfe74a9edd5a | 327:2df212a012af |
---|---|
1 /* | |
2 ******************************************************************************** | |
3 * | |
4 * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 | |
5 * R99 Version 3.3.0 | |
6 * REL-4 Version 4.1.0 | |
7 * | |
8 ******************************************************************************** | |
9 * | |
10 * File : calc_en.c | |
11 * Purpose : (pre-) quantization of pitch gain for MR795 | |
12 * | |
13 ******************************************************************************** | |
14 */ | |
15 | |
16 /* | |
17 ******************************************************************************** | |
18 * MODULE INCLUDE FILE AND VERSION ID | |
19 ******************************************************************************** | |
20 */ | |
21 #include "namespace.h" | |
22 #include "calc_en.h" | |
23 | |
24 /* | |
25 ******************************************************************************** | |
26 * INCLUDE FILES | |
27 ******************************************************************************** | |
28 */ | |
29 #include "typedef.h" | |
30 #include "basic_op.h" | |
31 #include "oper_32b.h" | |
32 #include "no_count.h" | |
33 #include "cnst.h" | |
34 #include "log2.h" | |
35 | |
36 /* | |
37 ******************************************************************************** | |
38 * PUBLIC PROGRAM CODE | |
39 ******************************************************************************** | |
40 */ | |
41 | |
42 /************************************************************************* | |
43 * | |
44 * FUNCTION: calc_unfilt_energies | |
45 * | |
46 * PURPOSE: calculation of several energy coefficients for unfiltered | |
47 * excitation signals and the LTP coding gain | |
48 * | |
49 * frac_en[0]*2^exp_en[0] = <res res> // LP residual energy | |
50 * frac_en[1]*2^exp_en[1] = <exc exc> // LTP residual energy | |
51 * frac_en[2]*2^exp_en[2] = <exc code> // LTP/CB innovation dot product | |
52 * frac_en[3]*2^exp_en[3] = <lres lres> // LTP residual energy | |
53 * // (lres = res - gain_pit*exc) | |
54 * ltpg = log2(LP_res_en / LTP_res_en) | |
55 * | |
56 *************************************************************************/ | |
57 void | |
58 calc_unfilt_energies( | |
59 Word16 res[], /* i : LP residual, Q0 */ | |
60 Word16 exc[], /* i : LTP excitation (unfiltered), Q0 */ | |
61 Word16 code[], /* i : CB innovation (unfiltered), Q13 */ | |
62 Word16 gain_pit, /* i : pitch gain, Q14 */ | |
63 Word16 L_subfr, /* i : Subframe length */ | |
64 | |
65 Word16 frac_en[], /* o : energy coefficients (4), fraction part, Q15 */ | |
66 Word16 exp_en[], /* o : energy coefficients (4), exponent part, Q0 */ | |
67 Word16 *ltpg /* o : LTP coding gain (log2()), Q13 */ | |
68 ) | |
69 { | |
70 Word32 s, L_temp; | |
71 Word16 i, exp, tmp; | |
72 Word16 ltp_res_en, pred_gain; | |
73 Word16 ltpg_exp, ltpg_frac; | |
74 | |
75 /* Compute residual energy */ | |
76 s = L_mac((Word32) 0, res[0], res[0]); | |
77 for (i = 1; i < L_subfr; i++) | |
78 s = L_mac(s, res[i], res[i]); | |
79 | |
80 /* ResEn := 0 if ResEn < 200.0 (= 400 Q1) */ | |
81 test(); | |
82 if (L_sub (s, 400L) < 0) | |
83 { | |
84 frac_en[0] = 0; move16 (); | |
85 exp_en[0] = -15; move16 (); | |
86 } | |
87 else | |
88 { | |
89 exp = norm_l(s); | |
90 frac_en[0] = extract_h(L_shl(s, exp)); move16 (); | |
91 exp_en[0] = sub(15, exp); move16 (); | |
92 } | |
93 | |
94 /* Compute ltp excitation energy */ | |
95 s = L_mac((Word32) 0, exc[0], exc[0]); | |
96 for (i = 1; i < L_subfr; i++) | |
97 s = L_mac(s, exc[i], exc[i]); | |
98 | |
99 exp = norm_l(s); | |
100 frac_en[1] = extract_h(L_shl(s, exp)); move16 (); | |
101 exp_en[1] = sub(15, exp); move16 (); | |
102 | |
103 /* Compute scalar product <exc[],code[]> */ | |
104 s = L_mac((Word32) 0, exc[0], code[0]); | |
105 for (i = 1; i < L_subfr; i++) | |
106 s = L_mac(s, exc[i], code[i]); | |
107 | |
108 exp = norm_l(s); | |
109 frac_en[2] = extract_h(L_shl(s, exp)); move16 (); | |
110 exp_en[2] = sub(16-14, exp); move16 (); | |
111 | |
112 /* Compute energy of LTP residual */ | |
113 s = 0L; move32 (); | |
114 for (i = 0; i < L_subfr; i++) | |
115 { | |
116 L_temp = L_mult(exc[i], gain_pit); | |
117 L_temp = L_shl(L_temp, 1); | |
118 tmp = sub(res[i], round(L_temp)); /* LTP residual, Q0 */ | |
119 s = L_mac (s, tmp, tmp); | |
120 } | |
121 | |
122 exp = norm_l(s); | |
123 ltp_res_en = extract_h (L_shl (s, exp)); | |
124 exp = sub (15, exp); | |
125 | |
126 frac_en[3] = ltp_res_en; move16 (); | |
127 exp_en[3] = exp; move16 (); | |
128 | |
129 /* calculate LTP coding gain, i.e. energy reduction LP res -> LTP res */ | |
130 test (); test (); | |
131 if (ltp_res_en > 0 && frac_en[0] != 0) | |
132 { | |
133 /* gain = ResEn / LTPResEn */ | |
134 pred_gain = div_s (shr (frac_en[0], 1), ltp_res_en); | |
135 exp = sub (exp, exp_en[0]); | |
136 | |
137 /* L_temp = ltpGain * 2^(30 + exp) */ | |
138 L_temp = L_deposit_h (pred_gain); | |
139 /* L_temp = ltpGain * 2^27 */ | |
140 L_temp = L_shr (L_temp, add (exp, 3)); | |
141 | |
142 /* Log2 = log2() + 27 */ | |
143 Log2(L_temp, <pg_exp, <pg_frac); | |
144 | |
145 /* ltpg = log2(LtpGain) * 2^13 --> range: +- 4 = +- 12 dB */ | |
146 L_temp = L_Comp (sub (ltpg_exp, 27), ltpg_frac); | |
147 *ltpg = round (L_shl (L_temp, 13)); /* Q13 */ | |
148 } | |
149 else | |
150 { | |
151 *ltpg = 0; move16 (); | |
152 } | |
153 } | |
154 | |
155 /************************************************************************* | |
156 * | |
157 * FUNCTION: calc_filt_energies | |
158 * | |
159 * PURPOSE: calculation of several energy coefficients for filtered | |
160 * excitation signals | |
161 * | |
162 * Compute coefficients need for the quantization and the optimum | |
163 * codebook gain gcu (for MR475 only). | |
164 * | |
165 * coeff[0] = y1 y1 | |
166 * coeff[1] = -2 xn y1 | |
167 * coeff[2] = y2 y2 | |
168 * coeff[3] = -2 xn y2 | |
169 * coeff[4] = 2 y1 y2 | |
170 * | |
171 * | |
172 * gcu = <xn2, y2> / <y2, y2> (0 if <xn2, y2> <= 0) | |
173 * | |
174 * Product <y1 y1> and <xn y1> have been computed in G_pitch() and | |
175 * are in vector g_coeff[]. | |
176 * | |
177 *************************************************************************/ | |
178 void | |
179 calc_filt_energies( | |
180 enum Mode mode, /* i : coder mode */ | |
181 Word16 xn[], /* i : LTP target vector, Q0 */ | |
182 Word16 xn2[], /* i : CB target vector, Q0 */ | |
183 Word16 y1[], /* i : Adaptive codebook, Q0 */ | |
184 Word16 Y2[], /* i : Filtered innovative vector, Q12 */ | |
185 Word16 g_coeff[], /* i : Correlations <xn y1> <y1 y1> */ | |
186 /* computed in G_pitch() */ | |
187 | |
188 Word16 frac_coeff[],/* o : energy coefficients (5), fraction part, Q15 */ | |
189 Word16 exp_coeff[], /* o : energy coefficients (5), exponent part, Q0 */ | |
190 Word16 *cod_gain_frac,/* o: optimum codebook gain (fraction part), Q15 */ | |
191 Word16 *cod_gain_exp /* o: optimum codebook gain (exponent part), Q0 */ | |
192 ) | |
193 { | |
194 Word32 s, ener_init; | |
195 Word16 i, exp, frac; | |
196 Word16 y2[L_SUBFR]; | |
197 | |
198 if (test(), sub(mode, MR795) == 0 || sub(mode, MR475) == 0) | |
199 { | |
200 ener_init = 0L; move32 (); | |
201 } | |
202 else | |
203 { | |
204 ener_init = 1L; move32 (); | |
205 } | |
206 | |
207 for (i = 0; i < L_SUBFR; i++) { | |
208 y2[i] = shr(Y2[i], 3); move16 (); | |
209 } | |
210 | |
211 frac_coeff[0] = g_coeff[0]; move16 (); | |
212 exp_coeff[0] = g_coeff[1]; move16 (); | |
213 frac_coeff[1] = negate(g_coeff[2]); move16 (); /* coeff[1] = -2 xn y1 */ | |
214 exp_coeff[1] = add(g_coeff[3], 1); move16 (); | |
215 | |
216 | |
217 /* Compute scalar product <y2[],y2[]> */ | |
218 | |
219 s = L_mac(ener_init, y2[0], y2[0]); | |
220 for (i = 1; i < L_SUBFR; i++) | |
221 s = L_mac(s, y2[i], y2[i]); | |
222 | |
223 exp = norm_l(s); | |
224 frac_coeff[2] = extract_h(L_shl(s, exp)); move16 (); | |
225 exp_coeff[2] = sub(15 - 18, exp); move16(); | |
226 | |
227 /* Compute scalar product -2*<xn[],y2[]> */ | |
228 | |
229 s = L_mac(ener_init, xn[0], y2[0]); | |
230 for (i = 1; i < L_SUBFR; i++) | |
231 s = L_mac(s, xn[i], y2[i]); | |
232 | |
233 exp = norm_l(s); | |
234 frac_coeff[3] = negate(extract_h(L_shl(s, exp))); move16 (); | |
235 exp_coeff[3] = sub(15 - 9 + 1, exp); move16 (); | |
236 | |
237 | |
238 /* Compute scalar product 2*<y1[],y2[]> */ | |
239 | |
240 s = L_mac(ener_init, y1[0], y2[0]); | |
241 for (i = 1; i < L_SUBFR; i++) | |
242 s = L_mac(s, y1[i], y2[i]); | |
243 | |
244 exp = norm_l(s); | |
245 frac_coeff[4] = extract_h(L_shl(s, exp)); move16 (); | |
246 exp_coeff[4] = sub(15 - 9 + 1, exp); move16(); | |
247 | |
248 if (test(), test (), sub(mode, MR475) == 0 || sub(mode, MR795) == 0) | |
249 { | |
250 /* Compute scalar product <xn2[],y2[]> */ | |
251 | |
252 s = L_mac(ener_init, xn2[0], y2[0]); | |
253 for (i = 1; i < L_SUBFR; i++) | |
254 s = L_mac(s, xn2[i], y2[i]); | |
255 | |
256 exp = norm_l(s); | |
257 frac = extract_h(L_shl(s, exp)); | |
258 exp = sub(15 - 9, exp); | |
259 | |
260 | |
261 if (test (), frac <= 0) | |
262 { | |
263 *cod_gain_frac = 0; move16 (); | |
264 *cod_gain_exp = 0; move16 (); | |
265 } | |
266 else | |
267 { | |
268 /* | |
269 gcu = <xn2, y2> / c[2] | |
270 = (frac>>1)/frac[2] * 2^(exp+1-exp[2]) | |
271 = div_s(frac>>1, frac[2])*2^-15 * 2^(exp+1-exp[2]) | |
272 = div_s * 2^(exp-exp[2]-14) | |
273 */ | |
274 *cod_gain_frac = div_s (shr (frac,1), frac_coeff[2]); move16 (); | |
275 *cod_gain_exp = sub (sub (exp, exp_coeff[2]), 14); move16 (); | |
276 | |
277 } | |
278 } | |
279 } | |
280 | |
281 /************************************************************************* | |
282 * | |
283 * FUNCTION: calc_target_energy | |
284 * | |
285 * PURPOSE: calculation of target energy | |
286 * | |
287 * en = <xn, xn> | |
288 * | |
289 *************************************************************************/ | |
290 void | |
291 calc_target_energy( | |
292 Word16 xn[], /* i: LTP target vector, Q0 */ | |
293 Word16 *en_exp, /* o: optimum codebook gain (exponent part), Q0 */ | |
294 Word16 *en_frac /* o: optimum codebook gain (fraction part), Q15 */ | |
295 ) | |
296 { | |
297 Word32 s; | |
298 Word16 i, exp; | |
299 | |
300 /* Compute scalar product <xn[], xn[]> */ | |
301 s = L_mac(0L, xn[0], xn[0]); | |
302 for (i = 1; i < L_SUBFR; i++) | |
303 s = L_mac(s, xn[i], xn[i]); | |
304 | |
305 /* s = SUM 2*xn(i) * xn(i) = <xn xn> * 2 */ | |
306 exp = norm_l(s); | |
307 *en_frac = extract_h(L_shl(s, exp)); | |
308 *en_exp = sub(16, exp); move16(); | |
309 } |