FreeCalypso > hg > gsm-codec-lib
comparison libgsmefr/oper_32b.c @ 53:49dd1ac8e75b
libgsmefr: import most *.c files from ETSI source
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 25 Nov 2022 16:18:21 +0000 |
parents | |
children | 92479d9a8e38 |
comparison
equal
deleted
inserted
replaced
52:988fd7ff514f | 53:49dd1ac8e75b |
---|---|
1 /***************************************************************************** | |
2 * * | |
3 * This file contains operations in double precision. * | |
4 * These operations are not standard double precision operations. * | |
5 * They are used where single precision is not enough but the full 32 bits * | |
6 * precision is not necessary. For example, the function Div_32() has a * | |
7 * 24 bits precision which is enough for our purposes. * | |
8 * * | |
9 * The double precision numbers use a special representation: * | |
10 * * | |
11 * L_32 = hi<<16 + lo<<1 * | |
12 * * | |
13 * L_32 is a 32 bit integer. * | |
14 * hi and lo are 16 bit signed integers. * | |
15 * As the low part also contains the sign, this allows fast multiplication. * | |
16 * * | |
17 * 0x8000 0000 <= L_32 <= 0x7fff fffe. * | |
18 * * | |
19 * We will use DPF (Double Precision Format )in this file to specify * | |
20 * this special format. * | |
21 ***************************************************************************** | |
22 */ | |
23 | |
24 #include "typedef.h" | |
25 #include "basic_op.h" | |
26 #include "oper_32b.h" | |
27 #include "count.h" | |
28 | |
29 /***************************************************************************** | |
30 * * | |
31 * Function L_Extract() * | |
32 * * | |
33 * Extract from a 32 bit integer two 16 bit DPF. * | |
34 * * | |
35 * Arguments: * | |
36 * * | |
37 * L_32 : 32 bit integer. * | |
38 * 0x8000 0000 <= L_32 <= 0x7fff ffff. * | |
39 * hi : b16 to b31 of L_32 * | |
40 * lo : (L_32 - hi<<16)>>1 * | |
41 ***************************************************************************** | |
42 */ | |
43 | |
44 void L_Extract (Word32 L_32, Word16 *hi, Word16 *lo) | |
45 { | |
46 *hi = extract_h (L_32); | |
47 *lo = extract_l (L_msu (L_shr (L_32, 1), *hi, 16384)); | |
48 return; | |
49 } | |
50 | |
51 /***************************************************************************** | |
52 * * | |
53 * Function L_Comp() * | |
54 * * | |
55 * Compose from two 16 bit DPF a 32 bit integer. * | |
56 * * | |
57 * L_32 = hi<<16 + lo<<1 * | |
58 * * | |
59 * Arguments: * | |
60 * * | |
61 * hi msb * | |
62 * lo lsf (with sign) * | |
63 * * | |
64 * Return Value : * | |
65 * * | |
66 * 32 bit long signed integer (Word32) whose value falls in the * | |
67 * range : 0x8000 0000 <= L_32 <= 0x7fff fff0. * | |
68 * * | |
69 ***************************************************************************** | |
70 */ | |
71 | |
72 Word32 L_Comp (Word16 hi, Word16 lo) | |
73 { | |
74 Word32 L_32; | |
75 | |
76 L_32 = L_deposit_h (hi); | |
77 return (L_mac (L_32, lo, 1)); /* = hi<<16 + lo<<1 */ | |
78 } | |
79 | |
80 /***************************************************************************** | |
81 * Function Mpy_32() * | |
82 * * | |
83 * Multiply two 32 bit integers (DPF). The result is divided by 2**31 * | |
84 * * | |
85 * L_32 = (hi1*hi2)<<1 + ( (hi1*lo2)>>15 + (lo1*hi2)>>15 )<<1 * | |
86 * * | |
87 * This operation can also be viewed as the multiplication of two Q31 * | |
88 * number and the result is also in Q31. * | |
89 * * | |
90 * Arguments: * | |
91 * * | |
92 * hi1 hi part of first number * | |
93 * lo1 lo part of first number * | |
94 * hi2 hi part of second number * | |
95 * lo2 lo part of second number * | |
96 * * | |
97 ***************************************************************************** | |
98 */ | |
99 | |
100 Word32 Mpy_32 (Word16 hi1, Word16 lo1, Word16 hi2, Word16 lo2) | |
101 { | |
102 Word32 L_32; | |
103 | |
104 L_32 = L_mult (hi1, hi2); | |
105 L_32 = L_mac (L_32, mult (hi1, lo2), 1); | |
106 L_32 = L_mac (L_32, mult (lo1, hi2), 1); | |
107 | |
108 return (L_32); | |
109 } | |
110 | |
111 /***************************************************************************** | |
112 * Function Mpy_32_16() * | |
113 * * | |
114 * Multiply a 16 bit integer by a 32 bit (DPF). The result is divided * | |
115 * by 2**15 * | |
116 * * | |
117 * * | |
118 * L_32 = (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1 * | |
119 * * | |
120 * Arguments: * | |
121 * * | |
122 * hi hi part of 32 bit number. * | |
123 * lo lo part of 32 bit number. * | |
124 * n 16 bit number. * | |
125 * * | |
126 ***************************************************************************** | |
127 */ | |
128 | |
129 Word32 Mpy_32_16 (Word16 hi, Word16 lo, Word16 n) | |
130 { | |
131 Word32 L_32; | |
132 | |
133 L_32 = L_mult (hi, n); | |
134 L_32 = L_mac (L_32, mult (lo, n), 1); | |
135 | |
136 return (L_32); | |
137 } | |
138 | |
139 /***************************************************************************** | |
140 * * | |
141 * Function Name : Div_32 * | |
142 * * | |
143 * Purpose : * | |
144 * Fractional integer division of two 32 bit numbers. * | |
145 * L_num / L_denom. * | |
146 * L_num and L_denom must be positive and L_num < L_denom. * | |
147 * L_denom = denom_hi<<16 + denom_lo<<1 * | |
148 * denom_hi is a normalize number. * | |
149 * * | |
150 * Inputs : * | |
151 * * | |
152 * L_num * | |
153 * 32 bit long signed integer (Word32) whose value falls in the * | |
154 * range : 0x0000 0000 < L_num < L_denom * | |
155 * * | |
156 * L_denom = denom_hi<<16 + denom_lo<<1 (DPF) * | |
157 * * | |
158 * denom_hi * | |
159 * 16 bit positive normalized integer whose value falls in the * | |
160 * range : 0x4000 < hi < 0x7fff * | |
161 * denom_lo * | |
162 * 16 bit positive integer whose value falls in the * | |
163 * range : 0 < lo < 0x7fff * | |
164 * * | |
165 * Return Value : * | |
166 * * | |
167 * L_div * | |
168 * 32 bit long signed integer (Word32) whose value falls in the * | |
169 * range : 0x0000 0000 <= L_div <= 0x7fff ffff. * | |
170 * * | |
171 * Algorithm: * | |
172 * * | |
173 * - find = 1/L_denom. * | |
174 * First approximation: approx = 1 / denom_hi * | |
175 * 1/L_denom = approx * (2.0 - L_denom * approx ) * | |
176 * * | |
177 * - result = L_num * (1/L_denom) * | |
178 ***************************************************************************** | |
179 */ | |
180 | |
181 Word32 Div_32 (Word32 L_num, Word16 denom_hi, Word16 denom_lo) | |
182 { | |
183 Word16 approx, hi, lo, n_hi, n_lo; | |
184 Word32 L_32; | |
185 | |
186 /* First approximation: 1 / L_denom = 1/denom_hi */ | |
187 | |
188 approx = div_s ((Word16) 0x3fff, denom_hi); | |
189 | |
190 /* 1/L_denom = approx * (2.0 - L_denom * approx) */ | |
191 | |
192 L_32 = Mpy_32_16 (denom_hi, denom_lo, approx); | |
193 | |
194 L_32 = L_sub ((Word32) 0x7fffffffL, L_32); | |
195 | |
196 L_Extract (L_32, &hi, &lo); | |
197 | |
198 L_32 = Mpy_32_16 (hi, lo, approx); | |
199 | |
200 /* L_num * (1/L_denom) */ | |
201 | |
202 L_Extract (L_32, &hi, &lo); | |
203 L_Extract (L_num, &n_hi, &n_lo); | |
204 L_32 = Mpy_32 (n_hi, n_lo, hi, lo); | |
205 L_32 = L_shl (L_32, 2); | |
206 | |
207 return (L_32); | |
208 } |