FreeCalypso > hg > gsm-codec-lib
comparison libtwamr/oper_32b.c @ 253:54f6bc41ed10
libtwamr: integrate a* modules
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 05 Apr 2024 06:08:15 +0000 |
parents | libgsmefr/oper_32b.c@92479d9a8e38 |
children |
comparison
equal
deleted
inserted
replaced
252:57b4053559ff | 253:54f6bc41ed10 |
---|---|
1 /***************************************************************************** | |
2 * * | |
3 * This file contains operations in double precision. * | |
4 * These operations are not standard double precision operations. * | |
5 * They are used where single precision is not enough but the full 32 bits * | |
6 * precision is not necessary. For example, the function Div_32() has a * | |
7 * 24 bits precision which is enough for our purposes. * | |
8 * * | |
9 * The double precision numbers use a special representation: * | |
10 * * | |
11 * L_32 = hi<<16 + lo<<1 * | |
12 * * | |
13 * L_32 is a 32 bit integer. * | |
14 * hi and lo are 16 bit signed integers. * | |
15 * As the low part also contains the sign, this allows fast multiplication. * | |
16 * * | |
17 * 0x8000 0000 <= L_32 <= 0x7fff fffe. * | |
18 * * | |
19 * We will use DPF (Double Precision Format )in this file to specify * | |
20 * this special format. * | |
21 ***************************************************************************** | |
22 */ | |
23 | |
24 #include "typedef.h" | |
25 #include "namespace.h" | |
26 #include "basic_op.h" | |
27 #include "oper_32b.h" | |
28 #include "no_count.h" | |
29 | |
30 /***************************************************************************** | |
31 * * | |
32 * Function L_Extract() * | |
33 * * | |
34 * Extract from a 32 bit integer two 16 bit DPF. * | |
35 * * | |
36 * Arguments: * | |
37 * * | |
38 * L_32 : 32 bit integer. * | |
39 * 0x8000 0000 <= L_32 <= 0x7fff ffff. * | |
40 * hi : b16 to b31 of L_32 * | |
41 * lo : (L_32 - hi<<16)>>1 * | |
42 ***************************************************************************** | |
43 */ | |
44 | |
45 void L_Extract (Word32 L_32, Word16 *hi, Word16 *lo) | |
46 { | |
47 *hi = extract_h (L_32); | |
48 *lo = extract_l (L_msu (L_shr (L_32, 1), *hi, 16384)); | |
49 return; | |
50 } | |
51 | |
52 /***************************************************************************** | |
53 * * | |
54 * Function L_Comp() * | |
55 * * | |
56 * Compose from two 16 bit DPF a 32 bit integer. * | |
57 * * | |
58 * L_32 = hi<<16 + lo<<1 * | |
59 * * | |
60 * Arguments: * | |
61 * * | |
62 * hi msb * | |
63 * lo lsf (with sign) * | |
64 * * | |
65 * Return Value : * | |
66 * * | |
67 * 32 bit long signed integer (Word32) whose value falls in the * | |
68 * range : 0x8000 0000 <= L_32 <= 0x7fff fff0. * | |
69 * * | |
70 ***************************************************************************** | |
71 */ | |
72 | |
73 Word32 L_Comp (Word16 hi, Word16 lo) | |
74 { | |
75 Word32 L_32; | |
76 | |
77 L_32 = L_deposit_h (hi); | |
78 return (L_mac (L_32, lo, 1)); /* = hi<<16 + lo<<1 */ | |
79 } | |
80 | |
81 /***************************************************************************** | |
82 * Function Mpy_32() * | |
83 * * | |
84 * Multiply two 32 bit integers (DPF). The result is divided by 2**31 * | |
85 * * | |
86 * L_32 = (hi1*hi2)<<1 + ( (hi1*lo2)>>15 + (lo1*hi2)>>15 )<<1 * | |
87 * * | |
88 * This operation can also be viewed as the multiplication of two Q31 * | |
89 * number and the result is also in Q31. * | |
90 * * | |
91 * Arguments: * | |
92 * * | |
93 * hi1 hi part of first number * | |
94 * lo1 lo part of first number * | |
95 * hi2 hi part of second number * | |
96 * lo2 lo part of second number * | |
97 * * | |
98 ***************************************************************************** | |
99 */ | |
100 | |
101 Word32 Mpy_32 (Word16 hi1, Word16 lo1, Word16 hi2, Word16 lo2) | |
102 { | |
103 Word32 L_32; | |
104 | |
105 L_32 = L_mult (hi1, hi2); | |
106 L_32 = L_mac (L_32, mult (hi1, lo2), 1); | |
107 L_32 = L_mac (L_32, mult (lo1, hi2), 1); | |
108 | |
109 return (L_32); | |
110 } | |
111 | |
112 /***************************************************************************** | |
113 * Function Mpy_32_16() * | |
114 * * | |
115 * Multiply a 16 bit integer by a 32 bit (DPF). The result is divided * | |
116 * by 2**15 * | |
117 * * | |
118 * * | |
119 * L_32 = (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1 * | |
120 * * | |
121 * Arguments: * | |
122 * * | |
123 * hi hi part of 32 bit number. * | |
124 * lo lo part of 32 bit number. * | |
125 * n 16 bit number. * | |
126 * * | |
127 ***************************************************************************** | |
128 */ | |
129 | |
130 Word32 Mpy_32_16 (Word16 hi, Word16 lo, Word16 n) | |
131 { | |
132 Word32 L_32; | |
133 | |
134 L_32 = L_mult (hi, n); | |
135 L_32 = L_mac (L_32, mult (lo, n), 1); | |
136 | |
137 return (L_32); | |
138 } | |
139 | |
140 /***************************************************************************** | |
141 * * | |
142 * Function Name : Div_32 * | |
143 * * | |
144 * Purpose : * | |
145 * Fractional integer division of two 32 bit numbers. * | |
146 * L_num / L_denom. * | |
147 * L_num and L_denom must be positive and L_num < L_denom. * | |
148 * L_denom = denom_hi<<16 + denom_lo<<1 * | |
149 * denom_hi is a normalize number. * | |
150 * * | |
151 * Inputs : * | |
152 * * | |
153 * L_num * | |
154 * 32 bit long signed integer (Word32) whose value falls in the * | |
155 * range : 0x0000 0000 < L_num < L_denom * | |
156 * * | |
157 * L_denom = denom_hi<<16 + denom_lo<<1 (DPF) * | |
158 * * | |
159 * denom_hi * | |
160 * 16 bit positive normalized integer whose value falls in the * | |
161 * range : 0x4000 < hi < 0x7fff * | |
162 * denom_lo * | |
163 * 16 bit positive integer whose value falls in the * | |
164 * range : 0 < lo < 0x7fff * | |
165 * * | |
166 * Return Value : * | |
167 * * | |
168 * L_div * | |
169 * 32 bit long signed integer (Word32) whose value falls in the * | |
170 * range : 0x0000 0000 <= L_div <= 0x7fff ffff. * | |
171 * * | |
172 * Algorithm: * | |
173 * * | |
174 * - find = 1/L_denom. * | |
175 * First approximation: approx = 1 / denom_hi * | |
176 * 1/L_denom = approx * (2.0 - L_denom * approx ) * | |
177 * * | |
178 * - result = L_num * (1/L_denom) * | |
179 ***************************************************************************** | |
180 */ | |
181 | |
182 Word32 Div_32 (Word32 L_num, Word16 denom_hi, Word16 denom_lo) | |
183 { | |
184 Word16 approx, hi, lo, n_hi, n_lo; | |
185 Word32 L_32; | |
186 | |
187 /* First approximation: 1 / L_denom = 1/denom_hi */ | |
188 | |
189 approx = div_s ((Word16) 0x3fff, denom_hi); | |
190 | |
191 /* 1/L_denom = approx * (2.0 - L_denom * approx) */ | |
192 | |
193 L_32 = Mpy_32_16 (denom_hi, denom_lo, approx); | |
194 | |
195 L_32 = L_sub ((Word32) 0x7fffffffL, L_32); | |
196 | |
197 L_Extract (L_32, &hi, &lo); | |
198 | |
199 L_32 = Mpy_32_16 (hi, lo, approx); | |
200 | |
201 /* L_num * (1/L_denom) */ | |
202 | |
203 L_Extract (L_32, &hi, &lo); | |
204 L_Extract (L_num, &n_hi, &n_lo); | |
205 L_32 = Mpy_32 (n_hi, n_lo, hi, lo); | |
206 L_32 = L_shl (L_32, 2); | |
207 | |
208 return (L_32); | |
209 } |