FreeCalypso > hg > gsm-codec-lib
comparison libtwamr/r_fft.c @ 412:810ac4b99025
libtwamr: integrate VAD2 r_fft.c
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Tue, 07 May 2024 01:22:02 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
411:bd5614fc780a | 412:810ac4b99025 |
---|---|
1 /* | |
2 ***************************************************************************** | |
3 * | |
4 * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 | |
5 * R99 Version 3.3.0 | |
6 * REL-4 Version 4.1.0 | |
7 * | |
8 ***************************************************************************** | |
9 * | |
10 * File : r_fft.c | |
11 * Purpose : Fast Fourier Transform (FFT) algorithm | |
12 * | |
13 ***************************************************************************** | |
14 */ | |
15 | |
16 /***************************************************************** | |
17 * | |
18 * This is an implementation of decimation-in-time FFT algorithm for | |
19 * real sequences. The techniques used here can be found in several | |
20 * books, e.g., i) Proakis and Manolakis, "Digital Signal Processing", | |
21 * 2nd Edition, Chapter 9, and ii) W.H. Press et. al., "Numerical | |
22 * Recipes in C", 2nd Ediiton, Chapter 12. | |
23 * | |
24 * Input - There is one input to this function: | |
25 * | |
26 * 1) An integer pointer to the input data array | |
27 * | |
28 * Output - There is no return value. | |
29 * The input data are replaced with transformed data. If the | |
30 * input is a real time domain sequence, it is replaced with | |
31 * the complex FFT for positive frequencies. The FFT value | |
32 * for DC and the foldover frequency are combined to form the | |
33 * first complex number in the array. The remaining complex | |
34 * numbers correspond to increasing frequencies. If the input | |
35 * is a complex frequency domain sequence arranged as above, | |
36 * it is replaced with the corresponding time domain sequence. | |
37 * | |
38 * Notes: | |
39 * | |
40 * 1) This function is designed to be a part of a VAD | |
41 * algorithm that requires 128-point FFT of real | |
42 * sequences. This is achieved here through a 64-point | |
43 * complex FFT. Consequently, the FFT size information is | |
44 * not transmitted explicitly. However, some flexibility | |
45 * is provided in the function to change the size of the | |
46 * FFT by specifying the size information through "define" | |
47 * statements. | |
48 * | |
49 * 2) The values of the complex sinusoids used in the FFT | |
50 * algorithm are stored in a ROM table. | |
51 * | |
52 * 3) In the c_fft function, the FFT values are divided by | |
53 * 2 after each stage of computation thus dividing the | |
54 * final FFT values by 64. This is somewhat different | |
55 * from the usual definition of FFT where the factor 1/N, | |
56 * i.e., 1/64, used for the IFFT and not the FFT. No factor | |
57 * is used in the r_fft function. | |
58 * | |
59 *****************************************************************/ | |
60 | |
61 #include "tw_amr.h" | |
62 #include "namespace.h" | |
63 #include "typedef.h" | |
64 #include "cnst.h" | |
65 #include "basic_op.h" | |
66 #include "oper_32b.h" | |
67 #include "no_count.h" | |
68 #include "vad2.h" | |
69 | |
70 #define SIZE 128 | |
71 #define SIZE_BY_TWO 64 | |
72 #define NUM_STAGE 6 | |
73 #define TRUE 1 | |
74 #define FALSE 0 | |
75 | |
76 static const Word16 phs_tbl[] = | |
77 { | |
78 | |
79 32767, 0, 32729, -1608, 32610, -3212, 32413, -4808, | |
80 32138, -6393, 31786, -7962, 31357, -9512, 30853, -11039, | |
81 30274, -12540, 29622, -14010, 28899, -15447, 28106, -16846, | |
82 27246, -18205, 26320, -19520, 25330, -20788, 24279, -22006, | |
83 23170, -23170, 22006, -24279, 20788, -25330, 19520, -26320, | |
84 18205, -27246, 16846, -28106, 15447, -28899, 14010, -29622, | |
85 12540, -30274, 11039, -30853, 9512, -31357, 7962, -31786, | |
86 6393, -32138, 4808, -32413, 3212, -32610, 1608, -32729, | |
87 0, -32768, -1608, -32729, -3212, -32610, -4808, -32413, | |
88 -6393, -32138, -7962, -31786, -9512, -31357, -11039, -30853, | |
89 -12540, -30274, -14010, -29622, -15447, -28899, -16846, -28106, | |
90 -18205, -27246, -19520, -26320, -20788, -25330, -22006, -24279, | |
91 -23170, -23170, -24279, -22006, -25330, -20788, -26320, -19520, | |
92 -27246, -18205, -28106, -16846, -28899, -15447, -29622, -14010, | |
93 -30274, -12540, -30853, -11039, -31357, -9512, -31786, -7962, | |
94 -32138, -6393, -32413, -4808, -32610, -3212, -32729, -1608 | |
95 | |
96 }; | |
97 | |
98 static const Word16 ii_table[] = | |
99 {SIZE / 2, SIZE / 4, SIZE / 8, SIZE / 16, SIZE / 32, SIZE / 64}; | |
100 | |
101 /* FFT function for complex sequences */ | |
102 | |
103 /* | |
104 * The decimation-in-time complex FFT is implemented below. | |
105 * The input complex numbers are presented as real part followed by | |
106 * imaginary part for each sample. The counters are therefore | |
107 * incremented by two to access the complex valued samples. | |
108 */ | |
109 | |
110 static void c_fft(Word16 * farray_ptr) | |
111 { | |
112 | |
113 Word16 i, j, k, ii, jj, kk, ji, kj, ii2; | |
114 Word32 ftmp, ftmp_real, ftmp_imag; | |
115 Word16 tmp, tmp1, tmp2; | |
116 | |
117 /* Rearrange the input array in bit reversed order */ | |
118 for (i = 0, j = 0; i < SIZE - 2; i = i + 2) | |
119 { test(); | |
120 if (sub(j, i) > 0) | |
121 { | |
122 ftmp = *(farray_ptr + i); move16(); | |
123 *(farray_ptr + i) = *(farray_ptr + j); move16(); | |
124 *(farray_ptr + j) = ftmp; move16(); | |
125 | |
126 ftmp = *(farray_ptr + i + 1); move16(); | |
127 *(farray_ptr + i + 1) = *(farray_ptr + j + 1); move16(); | |
128 *(farray_ptr + j + 1) = ftmp; move16(); | |
129 } | |
130 | |
131 k = SIZE_BY_TWO; move16(); | |
132 test(); | |
133 while (sub(j, k) >= 0) | |
134 { | |
135 j = sub(j, k); | |
136 k = shr(k, 1); | |
137 } | |
138 j = add(j, k); | |
139 } | |
140 | |
141 /* The FFT part */ | |
142 for (i = 0; i < NUM_STAGE; i++) | |
143 { /* i is stage counter */ | |
144 jj = shl(2, i); /* FFT size */ | |
145 kk = shl(jj, 1); /* 2 * FFT size */ | |
146 ii = ii_table[i]; /* 2 * number of FFT's */ move16(); | |
147 ii2 = shl(ii, 1); | |
148 ji = 0; /* ji is phase table index */ move16(); | |
149 | |
150 for (j = 0; j < jj; j = j + 2) | |
151 { /* j is sample counter */ | |
152 | |
153 for (k = j; k < SIZE; k = k + kk) | |
154 { /* k is butterfly top */ | |
155 kj = add(k, jj); /* kj is butterfly bottom */ | |
156 | |
157 /* Butterfly computations */ | |
158 ftmp_real = L_mult(*(farray_ptr + kj), phs_tbl[ji]); | |
159 ftmp_real = L_msu(ftmp_real, *(farray_ptr + kj + 1), phs_tbl[ji + 1]); | |
160 | |
161 ftmp_imag = L_mult(*(farray_ptr + kj + 1), phs_tbl[ji]); | |
162 ftmp_imag = L_mac(ftmp_imag, *(farray_ptr + kj), phs_tbl[ji + 1]); | |
163 | |
164 tmp1 = round(ftmp_real); | |
165 tmp2 = round(ftmp_imag); | |
166 | |
167 tmp = sub(*(farray_ptr + k), tmp1); | |
168 *(farray_ptr + kj) = shr(tmp, 1); move16(); | |
169 | |
170 tmp = sub(*(farray_ptr + k + 1), tmp2); | |
171 *(farray_ptr + kj + 1) = shr(tmp, 1); move16(); | |
172 | |
173 tmp = add(*(farray_ptr + k), tmp1); | |
174 *(farray_ptr + k) = shr(tmp, 1); move16(); | |
175 | |
176 tmp = add(*(farray_ptr + k + 1), tmp2); | |
177 *(farray_ptr + k + 1) = shr(tmp, 1); move16(); | |
178 } | |
179 | |
180 ji = add(ji, ii2); | |
181 } | |
182 } | |
183 } /* end of c_fft () */ | |
184 | |
185 | |
186 | |
187 void r_fft(Word16 * farray_ptr) | |
188 { | |
189 | |
190 Word16 ftmp1_real, ftmp1_imag, ftmp2_real, ftmp2_imag; | |
191 Word32 Lftmp1_real, Lftmp1_imag; | |
192 Word16 i, j; | |
193 Word32 Ltmp1; | |
194 | |
195 /* Perform the complex FFT */ | |
196 c_fft(farray_ptr); | |
197 | |
198 /* First, handle the DC and foldover frequencies */ | |
199 ftmp1_real = *farray_ptr; move16(); | |
200 ftmp2_real = *(farray_ptr + 1); move16(); | |
201 *farray_ptr = add(ftmp1_real, ftmp2_real); move16(); | |
202 *(farray_ptr + 1) = sub(ftmp1_real, ftmp2_real); move16(); | |
203 | |
204 /* Now, handle the remaining positive frequencies */ | |
205 for (i = 2, j = SIZE - i; i <= SIZE_BY_TWO; i = i + 2, j = SIZE - i) | |
206 { | |
207 ftmp1_real = add(*(farray_ptr + i), *(farray_ptr + j)); | |
208 ftmp1_imag = sub(*(farray_ptr + i + 1), *(farray_ptr + j + 1)); | |
209 ftmp2_real = add(*(farray_ptr + i + 1), *(farray_ptr + j + 1)); | |
210 ftmp2_imag = sub(*(farray_ptr + j), *(farray_ptr + i)); | |
211 | |
212 Lftmp1_real = L_deposit_h(ftmp1_real); | |
213 Lftmp1_imag = L_deposit_h(ftmp1_imag); | |
214 | |
215 Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[i]); | |
216 Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[i + 1]); | |
217 *(farray_ptr + i) = round(L_shr(Ltmp1, 1)); move16(); | |
218 | |
219 Ltmp1 = L_mac(Lftmp1_imag, ftmp2_imag, phs_tbl[i]); | |
220 Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[i + 1]); | |
221 *(farray_ptr + i + 1) = round(L_shr(Ltmp1, 1)); move16(); | |
222 | |
223 Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[j]); | |
224 Ltmp1 = L_mac(Ltmp1, ftmp2_imag, phs_tbl[j + 1]); | |
225 *(farray_ptr + j) = round(L_shr(Ltmp1, 1)); move16(); | |
226 | |
227 Ltmp1 = L_negate(Lftmp1_imag); | |
228 Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[j]); | |
229 Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[j + 1]); | |
230 *(farray_ptr + j + 1) = round(L_shr(Ltmp1, 1)); move16(); | |
231 | |
232 } | |
233 } /* end r_fft () */ |