FreeCalypso > hg > gsm-codec-lib
comparison libgsmfr2/rpe.c @ 270:bee3a94f42a7
libgsmfr2: integrate rpe.c from libgsm
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 14 Apr 2024 02:13:17 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
269:bd2271cb95d4 | 270:bee3a94f42a7 |
---|---|
1 /* | |
2 * This C source file has been adapted from TU-Berlin libgsm source, | |
3 * original notice follows: | |
4 * | |
5 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische | |
6 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for | |
7 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. | |
8 */ | |
9 | |
10 #include <stdint.h> | |
11 #include <assert.h> | |
12 #include "tw_gsmfr.h" | |
13 #include "typedef.h" | |
14 #include "ed_state.h" | |
15 #include "ed_internal.h" | |
16 | |
17 /* 4.2.13 .. 4.2.17 RPE ENCODING SECTION | |
18 */ | |
19 | |
20 /* 4.2.13 */ | |
21 | |
22 static void Weighting_filter ( | |
23 register word * e, /* signal [-5..0.39.44] IN */ | |
24 word * x /* signal [0..39] OUT */ | |
25 ) | |
26 /* | |
27 * The coefficients of the weighting filter are stored in a table | |
28 * (see table 4.4). The following scaling is used: | |
29 * | |
30 * H[0..10] = integer( real_H[ 0..10] * 8192 ); | |
31 */ | |
32 { | |
33 /* word wt[ 50 ]; */ | |
34 | |
35 register longword L_result; | |
36 register int k /* , i */ ; | |
37 | |
38 /* Initialization of a temporary working array wt[0...49] | |
39 */ | |
40 | |
41 /* for (k = 0; k <= 4; k++) wt[k] = 0; | |
42 * for (k = 5; k <= 44; k++) wt[k] = *e++; | |
43 * for (k = 45; k <= 49; k++) wt[k] = 0; | |
44 * | |
45 * (e[-5..-1] and e[40..44] are allocated by the caller, | |
46 * are initially zero and are not written anywhere.) | |
47 */ | |
48 e -= 5; | |
49 | |
50 /* Compute the signal x[0..39] | |
51 */ | |
52 for (k = 0; k <= 39; k++) { | |
53 | |
54 L_result = 8192 >> 1; | |
55 | |
56 /* for (i = 0; i <= 10; i++) { | |
57 * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] ); | |
58 * L_result = GSM_L_ADD( L_result, L_temp ); | |
59 * } | |
60 */ | |
61 | |
62 #undef STEP | |
63 #define STEP( i, H ) (e[ k + i ] * (longword)H) | |
64 | |
65 /* Every one of these multiplications is done twice -- | |
66 * but I don't see an elegant way to optimize this. | |
67 * Do you? | |
68 */ | |
69 | |
70 #ifdef STUPID_COMPILER | |
71 L_result += STEP( 0, -134 ) ; | |
72 L_result += STEP( 1, -374 ) ; | |
73 /* + STEP( 2, 0 ) */ | |
74 L_result += STEP( 3, 2054 ) ; | |
75 L_result += STEP( 4, 5741 ) ; | |
76 L_result += STEP( 5, 8192 ) ; | |
77 L_result += STEP( 6, 5741 ) ; | |
78 L_result += STEP( 7, 2054 ) ; | |
79 /* + STEP( 8, 0 ) */ | |
80 L_result += STEP( 9, -374 ) ; | |
81 L_result += STEP( 10, -134 ) ; | |
82 #else | |
83 L_result += | |
84 STEP( 0, -134 ) | |
85 + STEP( 1, -374 ) | |
86 /* + STEP( 2, 0 ) */ | |
87 + STEP( 3, 2054 ) | |
88 + STEP( 4, 5741 ) | |
89 + STEP( 5, 8192 ) | |
90 + STEP( 6, 5741 ) | |
91 + STEP( 7, 2054 ) | |
92 /* + STEP( 8, 0 ) */ | |
93 + STEP( 9, -374 ) | |
94 + STEP(10, -134 ) | |
95 ; | |
96 #endif | |
97 | |
98 /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *) | |
99 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *) | |
100 * | |
101 * x[k] = SASR( L_result, 16 ); | |
102 */ | |
103 | |
104 /* 2 adds vs. >>16 => 14, minus one shift to compensate for | |
105 * those we lost when replacing L_MULT by '*'. | |
106 */ | |
107 | |
108 L_result = SASR( L_result, 13 ); | |
109 x[k] = ( L_result < MIN_WORD ? MIN_WORD | |
110 : (L_result > MAX_WORD ? MAX_WORD : L_result )); | |
111 } | |
112 } | |
113 | |
114 /* 4.2.14 */ | |
115 | |
116 static void RPE_grid_selection ( | |
117 word * x, /* [0..39] IN */ | |
118 word * xM, /* [0..12] OUT */ | |
119 word * Mc_out /* OUT */ | |
120 ) | |
121 /* | |
122 * The signal x[0..39] is used to select the RPE grid which is | |
123 * represented by Mc. | |
124 */ | |
125 { | |
126 /* register word temp1; */ | |
127 register int /* m, */ i; | |
128 register longword L_result, L_temp; | |
129 longword EM; /* xxx should be L_EM? */ | |
130 word Mc; | |
131 | |
132 longword L_common_0_3; | |
133 | |
134 EM = 0; | |
135 Mc = 0; | |
136 | |
137 /* for (m = 0; m <= 3; m++) { | |
138 * L_result = 0; | |
139 * | |
140 * | |
141 * for (i = 0; i <= 12; i++) { | |
142 * | |
143 * temp1 = SASR( x[m + 3*i], 2 ); | |
144 * | |
145 * assert(temp1 != MIN_WORD); | |
146 * | |
147 * L_temp = GSM_L_MULT( temp1, temp1 ); | |
148 * L_result = GSM_L_ADD( L_temp, L_result ); | |
149 * } | |
150 * | |
151 * if (L_result > EM) { | |
152 * Mc = m; | |
153 * EM = L_result; | |
154 * } | |
155 * } | |
156 */ | |
157 | |
158 #undef STEP | |
159 #define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \ | |
160 L_result += L_temp * L_temp; | |
161 | |
162 /* common part of 0 and 3 */ | |
163 | |
164 L_result = 0; | |
165 STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 ); | |
166 STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 ); | |
167 STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12); | |
168 L_common_0_3 = L_result; | |
169 | |
170 /* i = 0 */ | |
171 | |
172 STEP( 0, 0 ); | |
173 L_result <<= 1; /* implicit in L_MULT */ | |
174 EM = L_result; | |
175 | |
176 /* i = 1 */ | |
177 | |
178 L_result = 0; | |
179 STEP( 1, 0 ); | |
180 STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 ); | |
181 STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 ); | |
182 STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12); | |
183 L_result <<= 1; | |
184 if (L_result > EM) { | |
185 Mc = 1; | |
186 EM = L_result; | |
187 } | |
188 | |
189 /* i = 2 */ | |
190 | |
191 L_result = 0; | |
192 STEP( 2, 0 ); | |
193 STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 ); | |
194 STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 ); | |
195 STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12); | |
196 L_result <<= 1; | |
197 if (L_result > EM) { | |
198 Mc = 2; | |
199 EM = L_result; | |
200 } | |
201 | |
202 /* i = 3 */ | |
203 | |
204 L_result = L_common_0_3; | |
205 STEP( 3, 12 ); | |
206 L_result <<= 1; | |
207 if (L_result > EM) { | |
208 Mc = 3; | |
209 EM = L_result; | |
210 } | |
211 | |
212 /**/ | |
213 | |
214 /* Down-sampling by a factor 3 to get the selected xM[0..12] | |
215 * RPE sequence. | |
216 */ | |
217 for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i]; | |
218 *Mc_out = Mc; | |
219 } | |
220 | |
221 /* 4.12.15 */ | |
222 | |
223 static void APCM_quantization_xmaxc_to_exp_mant ( | |
224 word xmaxc, /* IN */ | |
225 word * exp_out, /* OUT */ | |
226 word * mant_out ) /* OUT */ | |
227 { | |
228 word exp, mant; | |
229 | |
230 /* Compute exponent and mantissa of the decoded version of xmaxc | |
231 */ | |
232 | |
233 exp = 0; | |
234 if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1; | |
235 mant = xmaxc - (exp << 3); | |
236 | |
237 if (mant == 0) { | |
238 exp = -4; | |
239 mant = 7; | |
240 } | |
241 else { | |
242 while (mant <= 7) { | |
243 mant = mant << 1 | 1; | |
244 exp--; | |
245 } | |
246 mant -= 8; | |
247 } | |
248 | |
249 assert( exp >= -4 && exp <= 6 ); | |
250 assert( mant >= 0 && mant <= 7 ); | |
251 | |
252 *exp_out = exp; | |
253 *mant_out = mant; | |
254 } | |
255 | |
256 static void APCM_quantization ( | |
257 word * xM, /* [0..12] IN */ | |
258 | |
259 word * xMc, /* [0..12] OUT */ | |
260 word * mant_out, /* OUT */ | |
261 word * exp_out, /* OUT */ | |
262 word * xmaxc_out /* OUT */ | |
263 ) | |
264 { | |
265 int i, itest; | |
266 | |
267 word xmax, xmaxc, temp, temp1, temp2; | |
268 word exp, mant; | |
269 | |
270 /* Find the maximum absolute value xmax of xM[0..12]. | |
271 */ | |
272 | |
273 xmax = 0; | |
274 for (i = 0; i <= 12; i++) { | |
275 temp = xM[i]; | |
276 temp = GSM_ABS(temp); | |
277 if (temp > xmax) xmax = temp; | |
278 } | |
279 | |
280 /* Qantizing and coding of xmax to get xmaxc. | |
281 */ | |
282 | |
283 exp = 0; | |
284 temp = SASR( xmax, 9 ); | |
285 itest = 0; | |
286 | |
287 for (i = 0; i <= 5; i++) { | |
288 itest |= (temp <= 0); | |
289 temp = SASR( temp, 1 ); | |
290 | |
291 assert(exp <= 5); | |
292 if (itest == 0) exp++; /* exp = add (exp, 1) */ | |
293 } | |
294 | |
295 assert(exp <= 6 && exp >= 0); | |
296 temp = exp + 5; | |
297 | |
298 assert(temp <= 11 && temp >= 0); | |
299 xmaxc = gsm_add( SASR(xmax, temp), exp << 3 ); | |
300 | |
301 /* Quantizing and coding of the xM[0..12] RPE sequence | |
302 * to get the xMc[0..12] | |
303 */ | |
304 | |
305 APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant ); | |
306 | |
307 /* This computation uses the fact that the decoded version of xmaxc | |
308 * can be calculated by using the exponent and the mantissa part of | |
309 * xmaxc (logarithmic table). | |
310 * So, this method avoids any division and uses only a scaling | |
311 * of the RPE samples by a function of the exponent. A direct | |
312 * multiplication by the inverse of the mantissa (NRFAC[0..7] | |
313 * found in table 4.5) gives the 3 bit coded version xMc[0..12] | |
314 * of the RPE samples. | |
315 */ | |
316 | |
317 /* Direct computation of xMc[0..12] using table 4.5 | |
318 */ | |
319 | |
320 assert( exp <= 4096 && exp >= -4096); | |
321 assert( mant >= 0 && mant <= 7 ); | |
322 | |
323 temp1 = 6 - exp; /* normalization by the exponent */ | |
324 temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */ | |
325 | |
326 for (i = 0; i <= 12; i++) { | |
327 assert(temp1 >= 0 && temp1 < 16); | |
328 | |
329 temp = xM[i] << temp1; | |
330 temp = GSM_MULT( temp, temp2 ); | |
331 temp = SASR(temp, 12); | |
332 xMc[i] = temp + 4; /* see note below */ | |
333 } | |
334 | |
335 /* NOTE: This equation is used to make all the xMc[i] positive. | |
336 */ | |
337 | |
338 *mant_out = mant; | |
339 *exp_out = exp; | |
340 *xmaxc_out = xmaxc; | |
341 } | |
342 | |
343 /* 4.2.16 */ | |
344 | |
345 static void APCM_inverse_quantization ( | |
346 const word * xMc, /* [0..12] IN */ | |
347 word mant, | |
348 word exp, | |
349 register word * xMp) /* [0..12] OUT */ | |
350 /* | |
351 * This part is for decoding the RPE sequence of coded xMc[0..12] | |
352 * samples to obtain the xMp[0..12] array. Table 4.6 is used to get | |
353 * the mantissa of xmaxc (FAC[0..7]). | |
354 */ | |
355 { | |
356 int i; | |
357 word temp, temp1, temp2, temp3; | |
358 longword ltmp; | |
359 | |
360 assert( mant >= 0 && mant <= 7 ); | |
361 | |
362 temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */ | |
363 temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */ | |
364 temp3 = gsm_asl( 1, gsm_sub( temp2, 1 )); | |
365 | |
366 for (i = 13; i--;) { | |
367 assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */ | |
368 | |
369 /* temp = gsm_sub( *xMc++ << 1, 7 ); */ | |
370 temp = (*xMc++ << 1) - 7; /* restore sign */ | |
371 assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */ | |
372 | |
373 temp <<= 12; /* 16 bit signed */ | |
374 temp = GSM_MULT_R( temp1, temp ); | |
375 temp = GSM_ADD( temp, temp3 ); | |
376 *xMp++ = gsm_asr( temp, temp2 ); | |
377 } | |
378 } | |
379 | |
380 /* 4.2.17 */ | |
381 | |
382 static void RPE_grid_positioning ( | |
383 word Mc, /* grid position IN */ | |
384 register word * xMp, /* [0..12] IN */ | |
385 register word * ep /* [0..39] OUT */ | |
386 ) | |
387 /* | |
388 * This procedure computes the reconstructed long term residual signal | |
389 * ep[0..39] for the LTP analysis filter. The inputs are the Mc | |
390 * which is the grid position selection and the xMp[0..12] decoded | |
391 * RPE samples which are upsampled by a factor of 3 by inserting zero | |
392 * values. | |
393 */ | |
394 { | |
395 int i = 13; | |
396 | |
397 assert(0 <= Mc && Mc <= 3); | |
398 | |
399 switch (Mc) { | |
400 case 3: *ep++ = 0; | |
401 case 2: do { | |
402 *ep++ = 0; | |
403 case 1: *ep++ = 0; | |
404 case 0: *ep++ = *xMp++; | |
405 } while (--i); | |
406 } | |
407 while (++Mc < 4) *ep++ = 0; | |
408 | |
409 /* | |
410 | |
411 int i, k; | |
412 for (k = 0; k <= 39; k++) ep[k] = 0; | |
413 for (i = 0; i <= 12; i++) { | |
414 ep[ Mc + (3*i) ] = xMp[i]; | |
415 } | |
416 */ | |
417 } | |
418 | |
419 /* 4.2.18 */ | |
420 | |
421 /* This procedure adds the reconstructed long term residual signal | |
422 * ep[0..39] to the estimated signal dpp[0..39] from the long term | |
423 * analysis filter to compute the reconstructed short term residual | |
424 * signal dp[-40..-1]; also the reconstructed short term residual | |
425 * array dp[-120..-41] is updated. | |
426 */ | |
427 | |
428 #if 0 /* Has been inlined in code.c */ | |
429 void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp), | |
430 word * dpp, /* [0...39] IN */ | |
431 word * ep, /* [0...39] IN */ | |
432 word * dp) /* [-120...-1] IN/OUT */ | |
433 { | |
434 int k; | |
435 | |
436 for (k = 0; k <= 79; k++) | |
437 dp[ -120 + k ] = dp[ -80 + k ]; | |
438 | |
439 for (k = 0; k <= 39; k++) | |
440 dp[ -40 + k ] = gsm_add( ep[k], dpp[k] ); | |
441 } | |
442 #endif /* Has been inlined in code.c */ | |
443 | |
444 void Gsm_RPE_Encoding ( | |
445 struct gsmfr_0610_state * S, | |
446 | |
447 word * e, /* -5..-1][0..39][40..44 IN/OUT */ | |
448 word * xmaxc, /* OUT */ | |
449 word * Mc, /* OUT */ | |
450 word * xMc) /* [0..12] OUT */ | |
451 { | |
452 word x[40]; | |
453 word xM[13], xMp[13]; | |
454 word mant, exp; | |
455 | |
456 Weighting_filter(e, x); | |
457 RPE_grid_selection(x, xM, Mc); | |
458 | |
459 APCM_quantization( xM, xMc, &mant, &exp, xmaxc); | |
460 APCM_inverse_quantization( xMc, mant, exp, xMp); | |
461 | |
462 RPE_grid_positioning( *Mc, xMp, e ); | |
463 } | |
464 | |
465 void Gsm_RPE_Decoding ( | |
466 struct gsmfr_0610_state * S, | |
467 | |
468 word xmaxcr, | |
469 word Mcr, | |
470 const word * xMcr, /* [0..12], 3 bits IN */ | |
471 word * erp /* [0..39] OUT */ | |
472 ) | |
473 { | |
474 word exp, mant; | |
475 word xMp[ 13 ]; | |
476 | |
477 APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant ); | |
478 APCM_inverse_quantization( xMcr, mant, exp, xMp ); | |
479 RPE_grid_positioning( Mcr, xMp, erp ); | |
480 } |