diff libgsmfr2/lpc.c @ 268:0cfb7c95cce2

libgsmfr2: integrate lpc.c from libgsm
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 14 Apr 2024 01:50:48 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libgsmfr2/lpc.c	Sun Apr 14 01:50:48 2024 +0000
@@ -0,0 +1,282 @@
+/*
+ * This C source file has been adapted from TU-Berlin libgsm source,
+ * original notice follows:
+ *
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
+ * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+#include <stdint.h>
+#include <assert.h>
+#include "tw_gsmfr.h"
+#include "typedef.h"
+#include "ed_state.h"
+#include "ed_internal.h"
+
+/*
+ *  4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
+ */
+
+/* 4.2.4 */
+
+static void Autocorrelation (
+	word     * s,		/* [0..159]	IN/OUT  */
+	longword * L_ACF)	/* [0..8]	OUT     */
+/*
+ *  The goal is to compute the array L_ACF[k].  The signal s[i] must
+ *  be scaled in order to avoid an overflow situation.
+ */
+{
+	register int	k, i;
+
+	word		temp, smax, scalauto;
+
+	/*  Dynamic scaling of the array  s[0..159]
+	 */
+
+	/*  Search for the maximum.
+	 */
+	smax = 0;
+	for (k = 0; k <= 159; k++) {
+		temp = GSM_ABS( s[k] );
+		if (temp > smax) smax = temp;
+	}
+
+	/*  Computation of the scaling factor.
+	 */
+	if (smax == 0) scalauto = 0;
+	else {
+		assert(smax > 0);
+		scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
+	}
+
+	/*  Scaling of the array s[0...159]
+	 */
+
+	if (scalauto > 0) {
+
+#   define SCALE(n)	\
+	case n: for (k = 0; k <= 159; k++) \
+			s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
+		break;
+
+		switch (scalauto) {
+		SCALE(1)
+		SCALE(2)
+		SCALE(3)
+		SCALE(4)
+		}
+# undef	SCALE
+	}
+
+	/*  Compute the L_ACF[..].
+	 */
+	{
+		word  * sp = s;
+		word    sl = *sp;
+
+#	define STEP(k)	 L_ACF[k] += ((longword)sl * sp[ -(k) ]);
+
+#	define NEXTI	 sl = *++sp
+
+
+	for (k = 9; k--; L_ACF[k] = 0) ;
+
+	STEP (0);
+	NEXTI;
+	STEP(0); STEP(1);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2); STEP(3);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
+	NEXTI;
+	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
+
+	for (i = 8; i <= 159; i++) {
+
+		NEXTI;
+
+		STEP(0);
+		STEP(1); STEP(2); STEP(3); STEP(4);
+		STEP(5); STEP(6); STEP(7); STEP(8);
+	}
+
+	for (k = 9; k--; L_ACF[k] <<= 1) ;
+
+	}
+	/*   Rescaling of the array s[0..159]
+	 */
+	if (scalauto > 0) {
+		assert(scalauto <= 4);
+		for (k = 160; k--; *s++ <<= scalauto) ;
+	}
+}
+
+/* 4.2.5 */
+
+static void Reflection_coefficients (
+	longword	* L_ACF,		/* 0...8	IN	*/
+	register word	* r			/* 0...7	OUT 	*/
+)
+{
+	register int	i, m, n;
+	register word	temp;
+	register longword ltmp;
+	word		ACF[9];	/* 0..8 */
+	word		P[  9];	/* 0..8 */
+	word		K[  9]; /* 2..8 */
+
+	/*  Schur recursion with 16 bits arithmetic.
+	 */
+
+	if (L_ACF[0] == 0) {
+		for (i = 8; i--; *r++ = 0) ;
+		return;
+	}
+
+	assert( L_ACF[0] != 0 );
+	temp = gsm_norm( L_ACF[0] );
+
+	assert(temp >= 0 && temp < 32);
+
+	/* ? overflow ? */
+	for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
+
+	/*   Initialize array P[..] and K[..] for the recursion.
+	 */
+
+	for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
+	for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
+
+	/*   Compute reflection coefficients
+	 */
+	for (n = 1; n <= 8; n++, r++) {
+
+		temp = P[1];
+		temp = GSM_ABS(temp);
+		if (P[0] < temp) {
+			for (i = n; i <= 8; i++) *r++ = 0;
+			return;
+		}
+
+		*r = gsm_div( temp, P[0] );
+
+		assert(*r >= 0);
+		if (P[1] > 0) *r = -*r;		/* r[n] = sub(0, r[n]) */
+		assert (*r != MIN_WORD);
+		if (n == 8) return;
+
+		/*  Schur recursion
+		 */
+		temp = GSM_MULT_R( P[1], *r );
+		P[0] = GSM_ADD( P[0], temp );
+
+		for (m = 1; m <= 8 - n; m++) {
+			temp     = GSM_MULT_R( K[ m   ],    *r );
+			P[m]     = GSM_ADD(    P[ m+1 ],  temp );
+
+			temp     = GSM_MULT_R( P[ m+1 ],    *r );
+			K[m]     = GSM_ADD(    K[ m   ],  temp );
+		}
+	}
+}
+
+/* 4.2.6 */
+
+static void Transformation_to_Log_Area_Ratios (
+	register word	* r 			/* 0..7	   IN/OUT */
+)
+/*
+ *  The following scaling for r[..] and LAR[..] has been used:
+ *
+ *  r[..]   = integer( real_r[..]*32768. ); -1 <= real_r < 1.
+ *  LAR[..] = integer( real_LAR[..] * 16384 );
+ *  with -1.625 <= real_LAR <= 1.625
+ */
+{
+	register word	temp;
+	register int	i;
+
+	/* Computation of the LAR[0..7] from the r[0..7]
+	 */
+	for (i = 1; i <= 8; i++, r++) {
+
+		temp = *r;
+		temp = GSM_ABS(temp);
+		assert(temp >= 0);
+
+		if (temp < 22118) {
+			temp >>= 1;
+		} else if (temp < 31130) {
+			assert( temp >= 11059 );
+			temp -= 11059;
+		} else {
+			assert( temp >= 26112 );
+			temp -= 26112;
+			temp <<= 2;
+		}
+
+		*r = *r < 0 ? -temp : temp;
+		assert( *r != MIN_WORD );
+	}
+}
+
+/* 4.2.7 */
+
+static void Quantization_and_coding (
+	register word * LAR    	/* [0..7]	IN/OUT	*/
+)
+{
+	register word	temp;
+	longword	ltmp;
+
+	/*  This procedure needs four tables; the following equations
+	 *  give the optimum scaling for the constants:
+	 *
+	 *  A[0..7] = integer( real_A[0..7] * 1024 )
+	 *  B[0..7] = integer( real_B[0..7] *  512 )
+	 *  MAC[0..7] = maximum of the LARc[0..7]
+	 *  MIC[0..7] = minimum of the LARc[0..7]
+	 */
+
+#	undef STEP
+#	define	STEP( A, B, MAC, MIC )		\
+		temp = GSM_MULT( A,   *LAR );	\
+		temp = GSM_ADD(  temp,   B );	\
+		temp = GSM_ADD(  temp, 256 );	\
+		temp = SASR(     temp,   9 );	\
+		*LAR  =  temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
+		LAR++;
+
+	STEP(  20480,     0,  31, -32 );
+	STEP(  20480,     0,  31, -32 );
+	STEP(  20480,  2048,  15, -16 );
+	STEP(  20480, -2560,  15, -16 );
+
+	STEP(  13964,    94,   7,  -8 );
+	STEP(  15360, -1792,   7,  -8 );
+	STEP(   8534,  -341,   3,  -4 );
+	STEP(   9036, -1144,   3,  -4 );
+
+#	undef	STEP
+}
+
+void Gsm_LPC_Analysis (
+	struct gsmfr_0610_state *S,
+	word 		 * s,		/* 0..159 signals	IN/OUT	*/
+        word 		 * LARc)	/* 0..7   LARc's	OUT	*/
+{
+	longword	L_ACF[9];
+
+	Autocorrelation			  (s,	  L_ACF	);
+	Reflection_coefficients		  (L_ACF, LARc	);
+	Transformation_to_Log_Area_Ratios (LARc);
+	Quantization_and_coding		  (LARc);
+}