FreeCalypso > hg > gsm-codec-lib
diff libtwamr/calc_en.c @ 327:2df212a012af
libtwamr: integrate calc_en.c
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 18 Apr 2024 20:28:33 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtwamr/calc_en.c Thu Apr 18 20:28:33 2024 +0000 @@ -0,0 +1,309 @@ +/* +******************************************************************************** +* +* GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 +* R99 Version 3.3.0 +* REL-4 Version 4.1.0 +* +******************************************************************************** +* +* File : calc_en.c +* Purpose : (pre-) quantization of pitch gain for MR795 +* +******************************************************************************** +*/ + +/* +******************************************************************************** +* MODULE INCLUDE FILE AND VERSION ID +******************************************************************************** +*/ +#include "namespace.h" +#include "calc_en.h" + +/* +******************************************************************************** +* INCLUDE FILES +******************************************************************************** +*/ +#include "typedef.h" +#include "basic_op.h" +#include "oper_32b.h" +#include "no_count.h" +#include "cnst.h" +#include "log2.h" + +/* +******************************************************************************** +* PUBLIC PROGRAM CODE +******************************************************************************** +*/ + +/************************************************************************* + * + * FUNCTION: calc_unfilt_energies + * + * PURPOSE: calculation of several energy coefficients for unfiltered + * excitation signals and the LTP coding gain + * + * frac_en[0]*2^exp_en[0] = <res res> // LP residual energy + * frac_en[1]*2^exp_en[1] = <exc exc> // LTP residual energy + * frac_en[2]*2^exp_en[2] = <exc code> // LTP/CB innovation dot product + * frac_en[3]*2^exp_en[3] = <lres lres> // LTP residual energy + * // (lres = res - gain_pit*exc) + * ltpg = log2(LP_res_en / LTP_res_en) + * + *************************************************************************/ +void +calc_unfilt_energies( + Word16 res[], /* i : LP residual, Q0 */ + Word16 exc[], /* i : LTP excitation (unfiltered), Q0 */ + Word16 code[], /* i : CB innovation (unfiltered), Q13 */ + Word16 gain_pit, /* i : pitch gain, Q14 */ + Word16 L_subfr, /* i : Subframe length */ + + Word16 frac_en[], /* o : energy coefficients (4), fraction part, Q15 */ + Word16 exp_en[], /* o : energy coefficients (4), exponent part, Q0 */ + Word16 *ltpg /* o : LTP coding gain (log2()), Q13 */ +) +{ + Word32 s, L_temp; + Word16 i, exp, tmp; + Word16 ltp_res_en, pred_gain; + Word16 ltpg_exp, ltpg_frac; + + /* Compute residual energy */ + s = L_mac((Word32) 0, res[0], res[0]); + for (i = 1; i < L_subfr; i++) + s = L_mac(s, res[i], res[i]); + + /* ResEn := 0 if ResEn < 200.0 (= 400 Q1) */ + test(); + if (L_sub (s, 400L) < 0) + { + frac_en[0] = 0; move16 (); + exp_en[0] = -15; move16 (); + } + else + { + exp = norm_l(s); + frac_en[0] = extract_h(L_shl(s, exp)); move16 (); + exp_en[0] = sub(15, exp); move16 (); + } + + /* Compute ltp excitation energy */ + s = L_mac((Word32) 0, exc[0], exc[0]); + for (i = 1; i < L_subfr; i++) + s = L_mac(s, exc[i], exc[i]); + + exp = norm_l(s); + frac_en[1] = extract_h(L_shl(s, exp)); move16 (); + exp_en[1] = sub(15, exp); move16 (); + + /* Compute scalar product <exc[],code[]> */ + s = L_mac((Word32) 0, exc[0], code[0]); + for (i = 1; i < L_subfr; i++) + s = L_mac(s, exc[i], code[i]); + + exp = norm_l(s); + frac_en[2] = extract_h(L_shl(s, exp)); move16 (); + exp_en[2] = sub(16-14, exp); move16 (); + + /* Compute energy of LTP residual */ + s = 0L; move32 (); + for (i = 0; i < L_subfr; i++) + { + L_temp = L_mult(exc[i], gain_pit); + L_temp = L_shl(L_temp, 1); + tmp = sub(res[i], round(L_temp)); /* LTP residual, Q0 */ + s = L_mac (s, tmp, tmp); + } + + exp = norm_l(s); + ltp_res_en = extract_h (L_shl (s, exp)); + exp = sub (15, exp); + + frac_en[3] = ltp_res_en; move16 (); + exp_en[3] = exp; move16 (); + + /* calculate LTP coding gain, i.e. energy reduction LP res -> LTP res */ + test (); test (); + if (ltp_res_en > 0 && frac_en[0] != 0) + { + /* gain = ResEn / LTPResEn */ + pred_gain = div_s (shr (frac_en[0], 1), ltp_res_en); + exp = sub (exp, exp_en[0]); + + /* L_temp = ltpGain * 2^(30 + exp) */ + L_temp = L_deposit_h (pred_gain); + /* L_temp = ltpGain * 2^27 */ + L_temp = L_shr (L_temp, add (exp, 3)); + + /* Log2 = log2() + 27 */ + Log2(L_temp, <pg_exp, <pg_frac); + + /* ltpg = log2(LtpGain) * 2^13 --> range: +- 4 = +- 12 dB */ + L_temp = L_Comp (sub (ltpg_exp, 27), ltpg_frac); + *ltpg = round (L_shl (L_temp, 13)); /* Q13 */ + } + else + { + *ltpg = 0; move16 (); + } +} + +/************************************************************************* + * + * FUNCTION: calc_filt_energies + * + * PURPOSE: calculation of several energy coefficients for filtered + * excitation signals + * + * Compute coefficients need for the quantization and the optimum + * codebook gain gcu (for MR475 only). + * + * coeff[0] = y1 y1 + * coeff[1] = -2 xn y1 + * coeff[2] = y2 y2 + * coeff[3] = -2 xn y2 + * coeff[4] = 2 y1 y2 + * + * + * gcu = <xn2, y2> / <y2, y2> (0 if <xn2, y2> <= 0) + * + * Product <y1 y1> and <xn y1> have been computed in G_pitch() and + * are in vector g_coeff[]. + * + *************************************************************************/ +void +calc_filt_energies( + enum Mode mode, /* i : coder mode */ + Word16 xn[], /* i : LTP target vector, Q0 */ + Word16 xn2[], /* i : CB target vector, Q0 */ + Word16 y1[], /* i : Adaptive codebook, Q0 */ + Word16 Y2[], /* i : Filtered innovative vector, Q12 */ + Word16 g_coeff[], /* i : Correlations <xn y1> <y1 y1> */ + /* computed in G_pitch() */ + + Word16 frac_coeff[],/* o : energy coefficients (5), fraction part, Q15 */ + Word16 exp_coeff[], /* o : energy coefficients (5), exponent part, Q0 */ + Word16 *cod_gain_frac,/* o: optimum codebook gain (fraction part), Q15 */ + Word16 *cod_gain_exp /* o: optimum codebook gain (exponent part), Q0 */ +) +{ + Word32 s, ener_init; + Word16 i, exp, frac; + Word16 y2[L_SUBFR]; + + if (test(), sub(mode, MR795) == 0 || sub(mode, MR475) == 0) + { + ener_init = 0L; move32 (); + } + else + { + ener_init = 1L; move32 (); + } + + for (i = 0; i < L_SUBFR; i++) { + y2[i] = shr(Y2[i], 3); move16 (); + } + + frac_coeff[0] = g_coeff[0]; move16 (); + exp_coeff[0] = g_coeff[1]; move16 (); + frac_coeff[1] = negate(g_coeff[2]); move16 (); /* coeff[1] = -2 xn y1 */ + exp_coeff[1] = add(g_coeff[3], 1); move16 (); + + + /* Compute scalar product <y2[],y2[]> */ + + s = L_mac(ener_init, y2[0], y2[0]); + for (i = 1; i < L_SUBFR; i++) + s = L_mac(s, y2[i], y2[i]); + + exp = norm_l(s); + frac_coeff[2] = extract_h(L_shl(s, exp)); move16 (); + exp_coeff[2] = sub(15 - 18, exp); move16(); + + /* Compute scalar product -2*<xn[],y2[]> */ + + s = L_mac(ener_init, xn[0], y2[0]); + for (i = 1; i < L_SUBFR; i++) + s = L_mac(s, xn[i], y2[i]); + + exp = norm_l(s); + frac_coeff[3] = negate(extract_h(L_shl(s, exp))); move16 (); + exp_coeff[3] = sub(15 - 9 + 1, exp); move16 (); + + + /* Compute scalar product 2*<y1[],y2[]> */ + + s = L_mac(ener_init, y1[0], y2[0]); + for (i = 1; i < L_SUBFR; i++) + s = L_mac(s, y1[i], y2[i]); + + exp = norm_l(s); + frac_coeff[4] = extract_h(L_shl(s, exp)); move16 (); + exp_coeff[4] = sub(15 - 9 + 1, exp); move16(); + + if (test(), test (), sub(mode, MR475) == 0 || sub(mode, MR795) == 0) + { + /* Compute scalar product <xn2[],y2[]> */ + + s = L_mac(ener_init, xn2[0], y2[0]); + for (i = 1; i < L_SUBFR; i++) + s = L_mac(s, xn2[i], y2[i]); + + exp = norm_l(s); + frac = extract_h(L_shl(s, exp)); + exp = sub(15 - 9, exp); + + + if (test (), frac <= 0) + { + *cod_gain_frac = 0; move16 (); + *cod_gain_exp = 0; move16 (); + } + else + { + /* + gcu = <xn2, y2> / c[2] + = (frac>>1)/frac[2] * 2^(exp+1-exp[2]) + = div_s(frac>>1, frac[2])*2^-15 * 2^(exp+1-exp[2]) + = div_s * 2^(exp-exp[2]-14) + */ + *cod_gain_frac = div_s (shr (frac,1), frac_coeff[2]); move16 (); + *cod_gain_exp = sub (sub (exp, exp_coeff[2]), 14); move16 (); + + } + } +} + +/************************************************************************* + * + * FUNCTION: calc_target_energy + * + * PURPOSE: calculation of target energy + * + * en = <xn, xn> + * + *************************************************************************/ +void +calc_target_energy( + Word16 xn[], /* i: LTP target vector, Q0 */ + Word16 *en_exp, /* o: optimum codebook gain (exponent part), Q0 */ + Word16 *en_frac /* o: optimum codebook gain (fraction part), Q15 */ +) +{ + Word32 s; + Word16 i, exp; + + /* Compute scalar product <xn[], xn[]> */ + s = L_mac(0L, xn[0], xn[0]); + for (i = 1; i < L_SUBFR; i++) + s = L_mac(s, xn[i], xn[i]); + + /* s = SUM 2*xn(i) * xn(i) = <xn xn> * 2 */ + exp = norm_l(s); + *en_frac = extract_h(L_shl(s, exp)); + *en_exp = sub(16, exp); move16(); +}