FreeCalypso > hg > gsm-codec-lib
diff libgsmefr/inv_sqrt.c @ 53:49dd1ac8e75b
libgsmefr: import most *.c files from ETSI source
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 25 Nov 2022 16:18:21 +0000 |
parents | |
children | 2f0828ba0725 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libgsmefr/inv_sqrt.c Fri Nov 25 16:18:21 2022 +0000 @@ -0,0 +1,67 @@ +/************************************************************************* + * + * FUNCTION: Inv_sqrt + * + * PURPOSE: Computes 1/sqrt(L_x), where L_x is positive. + * If L_x is negative or zero, the result is 1 (3fff ffff). + * + * DESCRIPTION: + * The function 1/sqrt(L_x) is approximated by a table and linear + * interpolation. The inverse square root is computed using the + * following steps: + * 1- Normalization of L_x. + * 2- If (30-exponent) is even then shift right once. + * 3- exponent = (30-exponent)/2 +1 + * 4- i = bit25-b31 of L_x; 16<=i<=63 because of normalization. + * 5- a = bit10-b24 + * 6- i -=16 + * 7- L_y = table[i]<<16 - (table[i] - table[i+1]) * a * 2 + * 8- L_y >>= exponent + * + *************************************************************************/ + +#include "typedef.h" +#include "basic_op.h" +#include "count.h" + +#include "inv_sqrt.tab" /* Table for inv_sqrt() */ + +Word32 Inv_sqrt ( /* (o) : output value */ + Word32 L_x /* (i) : input value */ +) +{ + Word16 exp, i, a, tmp; + Word32 L_y; + + test (); + if (L_x <= (Word32) 0) + return ((Word32) 0x3fffffffL); + + exp = norm_l (L_x); + L_x = L_shl (L_x, exp); /* L_x is normalize */ + + exp = sub (30, exp); + test (); logic16 (); + if ((exp & 1) == 0) /* If exponent even -> shift right */ + { + L_x = L_shr (L_x, 1); + } + exp = shr (exp, 1); + exp = add (exp, 1); + + L_x = L_shr (L_x, 9); + i = extract_h (L_x); /* Extract b25-b31 */ + L_x = L_shr (L_x, 1); + a = extract_l (L_x); /* Extract b10-b24 */ + a = a & (Word16) 0x7fff; logic16 (); + + i = sub (i, 16); + + L_y = L_deposit_h (table[i]); /* table[i] << 16 */ + tmp = sub (table[i], table[i + 1]); /* table[i] - table[i+1]) */ + L_y = L_msu (L_y, tmp, a); /* L_y -= tmp*a*2 */ + + L_y = L_shr (L_y, exp); /* denormalization */ + + return (L_y); +}