FreeCalypso > hg > gsm-codec-lib
diff libgsmfr2/short_term.c @ 271:d320a8fa3392
libgsmfr2: integrate short_term.c from libgsm
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 14 Apr 2024 02:32:25 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libgsmfr2/short_term.c Sun Apr 14 02:32:25 2024 +0000 @@ -0,0 +1,332 @@ +/* + * This C source file has been adapted from TU-Berlin libgsm source, + * original notice follows: + * + * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische + * Universitaet Berlin. See the accompanying file "COPYRIGHT" for + * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. + */ + +#include <stdint.h> +#include "tw_gsmfr.h" +#include "typedef.h" +#include "ed_state.h" +#include "ed_internal.h" + +/* + * SHORT TERM ANALYSIS FILTERING SECTION + */ + +/* 4.2.8 */ + +static void Decoding_of_the_coded_Log_Area_Ratios ( + const word * LARc, /* coded log area ratio [0..7] IN */ + word * LARpp) /* out: decoded .. */ +{ + register word temp1 /* , temp2 */; + register long ltmp; /* for GSM_ADD */ + + /* This procedure requires for efficient implementation + * two tables. + * + * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) + * MIC[1..8] = minimum value of the LARc[1..8] + */ + + /* Compute the LARpp[1..8] + */ + + /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) { + * + * temp1 = GSM_ADD( *LARc, *MIC ) << 10; + * temp2 = *B << 1; + * temp1 = GSM_SUB( temp1, temp2 ); + * + * assert(*INVA != MIN_WORD); + * + * temp1 = GSM_MULT_R( *INVA, temp1 ); + * *LARpp = GSM_ADD( temp1, temp1 ); + * } + */ + +#undef STEP +#define STEP( B_TIMES_TWO, MIC, INVA ) \ + temp1 = GSM_ADD( *LARc++, MIC ) << 10; \ + temp1 = GSM_SUB( temp1, B_TIMES_TWO ); \ + temp1 = GSM_MULT_R( INVA, temp1 ); \ + *LARpp++ = GSM_ADD( temp1, temp1 ); + + STEP( 0, -32, 13107 ); + STEP( 0, -32, 13107 ); + STEP( 4096, -16, 13107 ); + STEP( -5120, -16, 13107 ); + + STEP( 188, -8, 19223 ); + STEP( -3584, -8, 17476 ); + STEP( -682, -4, 31454 ); + STEP( -2288, -4, 29708 ); + + /* NOTE: the addition of *MIC is used to restore + * the sign of *LARc. + */ +} + +/* 4.2.9 */ +/* Computation of the quantized reflection coefficients + */ + +/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] + */ + +/* + * Within each frame of 160 analyzed speech samples the short term + * analysis and synthesis filters operate with four different sets of + * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) + * and the actual set of decoded LARs (LARpp(j)) + * + * (Initial value: LARpp(j-1)[1..8] = 0.) + */ + +static void Coefficients_0_12 ( + register word * LARpp_j_1, + register word * LARpp_j, + register word * LARp) +{ + register int i; + register longword ltmp; + + for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) { + *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); + *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1)); + } +} + +static void Coefficients_13_26 ( + register word * LARpp_j_1, + register word * LARpp_j, + register word * LARp) +{ + register int i; + register longword ltmp; + for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { + *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 )); + } +} + +static void Coefficients_27_39 ( + register word * LARpp_j_1, + register word * LARpp_j, + register word * LARp) +{ + register int i; + register longword ltmp; + + for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { + *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); + *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 )); + } +} + +static void Coefficients_40_159 ( + register word * LARpp_j, + register word * LARp) +{ + register int i; + + for (i = 1; i <= 8; i++, LARp++, LARpp_j++) + *LARp = *LARpp_j; +} + +/* 4.2.9.2 */ + +static void LARp_to_rp ( + register word * LARp) /* [0..7] IN/OUT */ +/* + * The input of this procedure is the interpolated LARp[0..7] array. + * The reflection coefficients, rp[i], are used in the analysis + * filter and in the synthesis filter. + */ +{ + register int i; + register word temp; + register longword ltmp; + + for (i = 1; i <= 8; i++, LARp++) { + + /* temp = GSM_ABS( *LARp ); + * + * if (temp < 11059) temp <<= 1; + * else if (temp < 20070) temp += 11059; + * else temp = GSM_ADD( temp >> 2, 26112 ); + * + * *LARp = *LARp < 0 ? -temp : temp; + */ + + if (*LARp < 0) { + temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp); + *LARp = - ((temp < 11059) ? temp << 1 + : ((temp < 20070) ? temp + 11059 + : GSM_ADD( temp >> 2, 26112 ))); + } else { + temp = *LARp; + *LARp = (temp < 11059) ? temp << 1 + : ((temp < 20070) ? temp + 11059 + : GSM_ADD( temp >> 2, 26112 )); + } + } +} + +/* 4.2.10 */ +static void Short_term_analysis_filtering ( + struct gsmfr_0610_state * S, + register word * rp, /* [0..7] IN */ + register int k_n, /* k_end - k_start */ + register word * s /* [0..n-1] IN/OUT */ +) +/* + * This procedure computes the short term residual signal d[..] to be fed + * to the RPE-LTP loop from the s[..] signal and from the local rp[..] + * array (quantized reflection coefficients). As the call of this + * procedure can be done in many ways (see the interpolation of the LAR + * coefficient), it is assumed that the computation begins with index + * k_start (for arrays d[..] and s[..]) and stops with index k_end + * (k_start and k_end are defined in 4.2.9.1). This procedure also + * needs to keep the array u[0..7] in memory for each call. + */ +{ + register word * u = S->u; + register int i; + register word di, zzz, ui, sav, rpi; + register longword ltmp; + + for (; k_n--; s++) { + + di = sav = *s; + + for (i = 0; i < 8; i++) { /* YYY */ + + ui = u[i]; + rpi = rp[i]; + u[i] = sav; + + zzz = GSM_MULT_R(rpi, di); + sav = GSM_ADD( ui, zzz); + + zzz = GSM_MULT_R(rpi, ui); + di = GSM_ADD( di, zzz ); + } + + *s = di; + } +} + +static void Short_term_synthesis_filtering ( + struct gsmfr_0610_state * S, + register word * rrp, /* [0..7] IN */ + register int k, /* k_end - k_start */ + register word * wt, /* [0..k-1] IN */ + register word * sr /* [0..k-1] OUT */ +) +{ + register word * v = S->v; + register int i; + register word sri, tmp1, tmp2; + register longword ltmp; /* for GSM_ADD & GSM_SUB */ + + while (k--) { + sri = *wt++; + for (i = 8; i--;) { + + /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) ); + */ + tmp1 = rrp[i]; + tmp2 = v[i]; + tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD + ? MAX_WORD + : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2 + + 16384) >> 15)) ; + + sri = GSM_SUB( sri, tmp2 ); + + /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) ); + */ + tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD + ? MAX_WORD + : 0x0FFFF & (( (longword)tmp1 * (longword)sri + + 16384) >> 15)) ; + + v[i+1] = GSM_ADD( v[i], tmp1); + } + *sr++ = v[0] = sri; + } +} + +void Gsm_Short_Term_Analysis_Filter ( + struct gsmfr_0610_state * S, + + const word * LARc, /* coded log area ratio [0..7] IN */ + word * s /* signal [0..159] IN/OUT */ +) +{ + word * LARpp_j = S->LARpp[ S->j ]; + word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ]; + + word LARp[8]; + +#undef FILTER +# define FILTER Short_term_analysis_filtering + + Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j ); + + Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); + LARp_to_rp( LARp ); + FILTER( S, LARp, 13, s); + + Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); + LARp_to_rp( LARp ); + FILTER( S, LARp, 14, s + 13); + + Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); + LARp_to_rp( LARp ); + FILTER( S, LARp, 13, s + 27); + + Coefficients_40_159( LARpp_j, LARp); + LARp_to_rp( LARp ); + FILTER( S, LARp, 120, s + 40); +} + +void Gsm_Short_Term_Synthesis_Filter ( + struct gsmfr_0610_state * S, + + const word * LARcr, /* received log area ratios [0..7] IN */ + word * wt, /* received d [0..159] IN */ + + word * s /* signal s [0..159] OUT */ +) +{ + word * LARpp_j = S->LARpp[ S->j ]; + word * LARpp_j_1 = S->LARpp[ S->j ^=1 ]; + + word LARp[8]; + +#undef FILTER +# define FILTER Short_term_synthesis_filtering + + Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j ); + + Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); + LARp_to_rp( LARp ); + FILTER( S, LARp, 13, wt, s ); + + Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); + LARp_to_rp( LARp ); + FILTER( S, LARp, 14, wt + 13, s + 13 ); + + Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); + LARp_to_rp( LARp ); + FILTER( S, LARp, 13, wt + 27, s + 27 ); + + Coefficients_40_159( LARpp_j, LARp ); + LARp_to_rp( LARp ); + FILTER(S, LARp, 120, wt + 40, s + 40); +}