view libgsmefr/q_plsf_5.c @ 585:3c6bf0d26ee7 default tip

TW-TS-005 reader: fix maximum line length bug TW-TS-005 section 4.1 states: The maximum allowed length of each line is 80 characters, not including the OS-specific newline encoding. The implementation of this line length limit in the TW-TS-005 hex file reader function in the present suite was wrong, such that lines of the full maximum length could not be read. Fix it. Note that this bug affects comment lines too, not just actual RTP payloads. Neither Annex A nor Annex B features an RTP payload format that goes to the maximum of 40 bytes, but if a comment line goes to the maximum allowed length of 80 characters not including the terminating newline, the bug will be triggered, necessitating the present fix.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 25 Feb 2025 07:49:28 +0000
parents 72cf52ba91f8
children
line wrap: on
line source

/*************************************************************************
 *   FUNCTION:  Q_plsf_5()
 *
 *   PURPOSE:  Quantization of 2 sets of LSF parameters using 1st order MA
 *             prediction and split by 5 matrix quantization (split-MQ)
 *
 *   DESCRIPTION:
 *
 *        p[i] = pred_factor*past_r2q[i];   i=0,...,m-1
 *        r1[i]= lsf1[i] - p[i];      i=0,...,m-1
 *        r2[i]= lsf2[i] - p[i];      i=0,...,m-1
 *   where:
 *        lsf1[i]           1st mean-removed LSF vector.
 *        lsf2[i]           2nd mean-removed LSF vector.
 *        r1[i]             1st residual prediction vector.
 *        r2[i]             2nd residual prediction vector.
 *        past_r2q[i]       Past quantized residual (2nd vector).
 *
 *   The residual vectors r1[i] and r2[i] are jointly quantized using
 *   split-MQ with 5 codebooks. Each 4th dimension submatrix contains 2
 *   elements from each residual vector. The 5 submatrices are as follows:
 *     {r1[0], r1[1], r2[0], r2[1]};  {r1[2], r1[3], r2[2], r2[3]};
 *     {r1[4], r1[5], r2[4], r2[5]};  {r1[6], r1[7], r2[6], r2[7]};
 *                    {r1[8], r1[9], r2[8], r2[9]};
 *
 *************************************************************************/

#include "gsm_efr.h"
#include "typedef.h"
#include "namespace.h"
#include "basic_op.h"
#include "no_count.h"
#include "sig_proc.h"
#include "codec.h"

#include "cnst.h"
#include "dtx.h"
#include "enc_state.h"

#include "q_plsf5_tab.h"         /* Codebooks of LSF prediction residual */

/* Locals functions */

static void Lsf_wt (
    Word16 *lsf,       /* input : LSF vector                    */
     Word16 *wf2       /* output: square of weighting factors   */
);

static
Word16 Vq_subvec (     /* output: return quantization index     */
    Word16 *lsf_r1,    /* input : 1st LSF residual vector       */
    Word16 *lsf_r2,    /* input : and LSF residual vector       */
    const Word16 *dico,/* input : quantization codebook         */
    Word16 *wf1,       /* input : 1st LSF weighting factors     */
    Word16 *wf2,       /* input : 2nd LSF weighting factors     */
    Word16 dico_size   /* input : size of quantization codebook */
);

static
Word16 Vq_subvec_s (   /* output: return quantization index     */
    Word16 *lsf_r1,    /* input : 1st LSF residual vector       */
    Word16 *lsf_r2,    /* input : and LSF residual vector       */
    const Word16 *dico,/* input : quantization codebook         */
    Word16 *wf1,       /* input : 1st LSF weighting factors     */
    Word16 *wf2,       /* input : 2nd LSF weighting factors     */
    Word16 dico_size   /* input : size of quantization codebook */
);

/* M  ->order of linear prediction filter                      */
/* LSF_GAP  -> Minimum distance between LSF after quantization */
/*             50 Hz = 205                                     */
/* PRED_FAC -> Predcition factor                               */

#define M         10
#define LSF_GAP   205
#define PRED_FAC  21299

void Q_plsf_5 (
    struct EFR_encoder_state *st,
    Word16 *lsp1,      /* input : 1st LSP vector                     */
    Word16 *lsp2,      /* input : 2nd LSP vector                     */
    Word16 *lsp1_q,    /* output: quantized 1st LSP vector           */
    Word16 *lsp2_q,    /* output: quantized 2nd LSP vector           */
    Word16 *indice,    /* output: quantization indices of 5 matrices */
    Word16 txdtx_ctrl  /* input : tx dtx control word                */
)
{
    Word16 i;
    Word16 lsf1[M], lsf2[M], wf1[M], wf2[M], lsf_p[M], lsf_r1[M], lsf_r2[M];
    Word16 lsf1_q[M], lsf2_q[M];
    Word16 lsf_aver[M];

    /* convert LSFs to normalize frequency domain 0..16384  */

    Lsp_lsf (lsp1, lsf1, M);
    Lsp_lsf (lsp2, lsf2, M);

    /* Update LSF CN quantizer "memory" */

    if ((txdtx_ctrl & TX_SP_FLAG) == 0
        && (txdtx_ctrl & TX_PREV_HANGOVER_ACTIVE) != 0)
    {
        update_lsf_p_CN (st->lsf_old_tx, st->lsf_p_CN);
    }
    if ((txdtx_ctrl & TX_SID_UPDATE) != 0)
    {
        /* New SID frame is to be sent:
        Compute average of the current LSFs and the LSFs in the history */

        aver_lsf_history (st->lsf_old_tx, lsf1, lsf2, lsf_aver);
    }
    /* Update LSF history with unquantized LSFs when no speech activity
    is present */

    if ((txdtx_ctrl & TX_SP_FLAG) == 0)
    {
        update_lsf_history (lsf1, lsf2, st->lsf_old_tx);
    }
    if ((txdtx_ctrl & TX_SID_UPDATE) != 0)
    {
        /* Compute LSF weighting factors for lsf2, using averaged LSFs */
        /* Set LSF weighting factors for lsf1 to zero */
        /* Replace lsf1 and lsf2 by the averaged LSFs */

        Lsf_wt (lsf_aver, wf2);
        for (i = 0; i < M; i++)
        {
            wf1[i] = 0;                                 move16 (); 
            lsf1[i] = lsf_aver[i];                      move16 (); 
            lsf2[i] = lsf_aver[i];                      move16 (); 
        }
    }
    else
    {
        /* Compute LSF weighting factors */

        Lsf_wt (lsf1, wf1);
        Lsf_wt (lsf2, wf2);
    }

    /* Compute predicted LSF and prediction error */

    if ((txdtx_ctrl & TX_SP_FLAG) != 0)
    {
        for (i = 0; i < M; i++)
        {
            lsf_p[i] = add (mean_lsf[i], mult (st->past_r2_q[i], PRED_FAC));
            lsf_r1[i] = sub (lsf1[i], lsf_p[i]);
            lsf_r2[i] = sub (lsf2[i], lsf_p[i]);
        }
    }
    else
    {
        for (i = 0; i < M; i++)
        {
            lsf_r1[i] = sub (lsf1[i], st->lsf_p_CN[i]);
            lsf_r2[i] = sub (lsf2[i], st->lsf_p_CN[i]);
        }
    }

    /*---- Split-VQ of prediction error ----*/

    indice[0] = Vq_subvec (&lsf_r1[0], &lsf_r2[0], dico1_lsf,
                           &wf1[0], &wf2[0], DICO1_SIZE);
                                                        move16 (); 

    indice[1] = Vq_subvec (&lsf_r1[2], &lsf_r2[2], dico2_lsf,
                           &wf1[2], &wf2[2], DICO2_SIZE);
                                                        move16 (); 

    indice[2] = Vq_subvec_s (&lsf_r1[4], &lsf_r2[4], dico3_lsf,
                             &wf1[4], &wf2[4], DICO3_SIZE);
                                                        move16 (); 

    indice[3] = Vq_subvec (&lsf_r1[6], &lsf_r2[6], dico4_lsf,
                           &wf1[6], &wf2[6], DICO4_SIZE);
                                                        move16 (); 

    indice[4] = Vq_subvec (&lsf_r1[8], &lsf_r2[8], dico5_lsf,
                           &wf1[8], &wf2[8], DICO5_SIZE);
                                                        move16 (); 

    /* Compute quantized LSFs and update the past quantized residual */
    /* In case of no speech activity, skip computing the quantized LSFs,
       and set past_r2_q to zero (initial value) */

    if ((txdtx_ctrl & TX_SP_FLAG) != 0)
    {
        for (i = 0; i < M; i++)
        {
            lsf1_q[i] = add (lsf_r1[i], lsf_p[i]);
            lsf2_q[i] = add (lsf_r2[i], lsf_p[i]);
            st->past_r2_q[i] = lsf_r2[i];
        }

        /* verification that LSFs has minimum distance of LSF_GAP */

        Reorder_lsf (lsf1_q, LSF_GAP, M);
        Reorder_lsf (lsf2_q, LSF_GAP, M);

        /* Update LSF history with quantized LSFs
        when hangover period is active */

        if ((txdtx_ctrl & TX_HANGOVER_ACTIVE) != 0)
        {
            update_lsf_history (lsf1_q, lsf2_q, st->lsf_old_tx);
        }
        /*  convert LSFs to the cosine domain */

        Lsf_lsp (lsf1_q, lsp1_q, M);
        Lsf_lsp (lsf2_q, lsp2_q, M);
    }
    else
    {
        for (i = 0; i < M; i++)
        {
            st->past_r2_q[i] = 0;
        }
    }

    return;
}

/* Quantization of a 4 dimensional subvector */

static
Word16 Vq_subvec (      /* output: return quantization index     */
    Word16 *lsf_r1,     /* input : 1st LSF residual vector       */
    Word16 *lsf_r2,     /* input : and LSF residual vector       */
    const Word16 *dico, /* input : quantization codebook         */
    Word16 *wf1,        /* input : 1st LSF weighting factors     */
    Word16 *wf2,        /* input : 2nd LSF weighting factors     */
    Word16 dico_size    /* input : size of quantization codebook */
)
{
    Word16 i, index, temp;
    const Word16 *p_dico;
    Word32 dist_min, dist;

    dist_min = MAX_32;                                  move32 (); 
    p_dico = dico;                                      move16 (); 

    for (i = 0; i < dico_size; i++)
    {
        temp = sub (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = sub (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (dist < dist_min)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
        }
    }

    /* Reading the selected vector */

    p_dico = &dico[shl (index, 2)];                     move16 (); 
    lsf_r1[0] = *p_dico++;                              move16 (); 
    lsf_r1[1] = *p_dico++;                              move16 (); 
    lsf_r2[0] = *p_dico++;                              move16 (); 
    lsf_r2[1] = *p_dico++;                              move16 (); 

    return index;

}

/* Quantization of a 4 dimensional subvector with a signed codebook */

static
Word16 Vq_subvec_s (    /* output: return quantization index     */
    Word16 *lsf_r1,     /* input : 1st LSF residual vector       */
    Word16 *lsf_r2,     /* input : and LSF residual vector       */
    const Word16 *dico, /* input : quantization codebook         */
    Word16 *wf1,        /* input : 1st LSF weighting factors     */
    Word16 *wf2,        /* input : 2nd LSF weighting factors     */
    Word16 dico_size)   /* input : size of quantization codebook */
{
    Word16 i, index, sign, temp;
    const Word16 *p_dico;
    Word32 dist_min, dist;

    dist_min = MAX_32;                                  move32 (); 
    p_dico = dico;                                      move16 (); 

    for (i = 0; i < dico_size; i++)
    {
        /* test positive */

        temp = sub (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = sub (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (dist < dist_min)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
            sign = 0;                                   move16 (); 
        }
        /* test negative */

        p_dico -= 4;                                    move16 (); 
        temp = add (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = add (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = add (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = add (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (dist < dist_min)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
            sign = 1;                                   move16 (); 
        }
    }

    /* Reading the selected vector */

    p_dico = &dico[shl (index, 2)];                     move16 (); 
    test (); 
    if (sign == 0)
    {
        lsf_r1[0] = *p_dico++;                          move16 (); 
        lsf_r1[1] = *p_dico++;                          move16 (); 
        lsf_r2[0] = *p_dico++;                          move16 (); 
        lsf_r2[1] = *p_dico++;                          move16 (); 
    }
    else
    {
        lsf_r1[0] = negate (*p_dico++);                 move16 (); 
        lsf_r1[1] = negate (*p_dico++);                 move16 (); 
        lsf_r2[0] = negate (*p_dico++);                 move16 (); 
        lsf_r2[1] = negate (*p_dico++);                 move16 (); 
    }

    index = shl (index, 1);
    index = add (index, sign);

    return index;

}

/****************************************************
 * FUNCTION  Lsf_wt                                                         *
 *                                                                          *
 ****************************************************
 * Compute LSF weighting factors                                            *
 *                                                                          *
 *  d[i] = lsf[i+1] - lsf[i-1]                                              *
 *                                                                          *
 *  The weighting factors are approximated by two line segment.             *
 *                                                                          *
 *  First segment passes by the following 2 points:                         *
 *                                                                          *
 *     d[i] = 0Hz     wf[i] = 3.347                                         *
 *     d[i] = 450Hz   wf[i] = 1.8                                           *
 *                                                                          *
 *  Second segment passes by the following 2 points:                        *
 *                                                                          *
 *     d[i] = 450Hz   wf[i] = 1.8                                           *
 *     d[i] = 1500Hz  wf[i] = 1.0                                           *
 *                                                                          *
 *  if( d[i] < 450Hz )                                                      *
 *    wf[i] = 3.347 - ( (3.347-1.8) / (450-0)) *  d[i]                      *
 *  else                                                                    *
 *    wf[i] = 1.8 - ( (1.8-1.0) / (1500-450)) *  (d[i] - 450)               *
 *                                                                          *
 *                                                                          *
 *  if( d[i] < 1843)                                                        *
 *    wf[i] = 3427 - (28160*d[i])>>15                                       *
 *  else                                                                    *
 *    wf[i] = 1843 - (6242*(d[i]-1843))>>15                                 *
 *                                                                          *
 *--------------------------------------------------------------------------*/

static
void Lsf_wt (
    Word16 *lsf,         /* input : LSF vector                  */
    Word16 *wf)          /* output: square of weighting factors */
{
    Word16 temp;
    Word16 i;
    /* wf[0] = lsf[1] - 0  */
    wf[0] = lsf[1];                                     move16 (); 
    for (i = 1; i < 9; i++)
    {
        wf[i] = sub (lsf[i + 1], lsf[i - 1]);           move16 (); 
    }
    /* wf[9] = 0.5 - lsf[8] */    
    wf[9] = sub (16384, lsf[8]);move16 ();      

    for (i = 0; i < 10; i++)
    {
        temp = sub (wf[i], 1843);
        test (); 
        if (temp < 0)
        {
            wf[i] = sub (3427, mult (wf[i], 28160));    move16 (); 
        }
        else
        {
            wf[i] = sub (1843, mult (temp, 6242));      move16 (); 
        }

        wf[i] = shl (wf[i], 3); move16 (); 
    }
    return;
}