view libtwamr/d_plsf_5.c @ 585:3c6bf0d26ee7 default tip

TW-TS-005 reader: fix maximum line length bug TW-TS-005 section 4.1 states: The maximum allowed length of each line is 80 characters, not including the OS-specific newline encoding. The implementation of this line length limit in the TW-TS-005 hex file reader function in the present suite was wrong, such that lines of the full maximum length could not be read. Fix it. Note that this bug affects comment lines too, not just actual RTP payloads. Neither Annex A nor Annex B features an RTP payload format that goes to the maximum of 40 bytes, but if a comment line goes to the maximum allowed length of 80 characters not including the terminating newline, the bug will be triggered, necessitating the present fix.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 25 Feb 2025 07:49:28 +0000
parents 29769a9b89d3
children
line wrap: on
line source

/*
*****************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
*****************************************************************************
*
*      File             : d_plsf_5.c
*
*****************************************************************************
*/
 
/*
*****************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
*****************************************************************************
*/
#include "namespace.h"
#include "d_plsf.h"
 
/*
*****************************************************************************
*                         INCLUDE FILES
*****************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "lsp_lsf.h"
#include "reorder.h"
#include "cnst.h"
#include "memops.h"
#include "q_plsf5_tab.h"

/*
*****************************************************************************
*                         LOCAL VARIABLES AND TABLES
*****************************************************************************
*/

/* ALPHA    ->  0.95       */
/* ONE_ALPHA-> (1.0-ALPHA) */
#define ALPHA     31128
#define ONE_ALPHA 1639

/*
*--------------------------------------------------*
* Constants (defined in cnst.h)                    *
*--------------------------------------------------*
*  M                    : LPC order
*--------------------------------------------------*
*/
 
/*
*****************************************************************************
*                         PUBLIC PROGRAM CODE
*****************************************************************************
*/
/*
**************************************************************************
*
*  Function    : D_plsf_5
*  Purpose     : Decodes the 2 sets of LSP parameters in a frame 
*                using the received quantization indices.
*
**************************************************************************
*/
int D_plsf_5 (
    D_plsfState *st,    /* i/o: State variables                            */
    Word16 bfi,         /* i  : bad frame indicator (set to 1 if a bad    
                                frame is received)                         */  
    Word16 *indice,     /* i  : quantization indices of 5 submatrices, Q0  */
    Word16 *lsp1_q,     /* o  : quantized 1st LSP vector (M),          Q15 */
    Word16 *lsp2_q      /* o  : quantized 2nd LSP vector (M),          Q15 */
)
{
    Word16 i;
    const Word16 *p_dico;
    Word16 temp, sign;
    Word16 lsf1_r[M], lsf2_r[M];
    Word16 lsf1_q[M], lsf2_q[M];

    test (); 
    if (bfi != 0)                               /* if bad frame */
    {
        /* use the past LSFs slightly shifted towards their mean */

        for (i = 0; i < M; i++)
        {
            /* lsfi_q[i] = ALPHA*st->past_lsf_q[i] + ONE_ALPHA*mean_lsf[i]; */

            lsf1_q[i] = add (mult (st->past_lsf_q[i], ALPHA),
                             mult (mean_lsf[i], ONE_ALPHA));
                                                move16 (); 

            lsf2_q[i] = lsf1_q[i];              move16 (); 
        }

        /* estimate past quantized residual to be used in next frame */

        for (i = 0; i < M; i++)
        {
            /* temp  = mean_lsf[i] +  st->past_r_q[i] * LSP_PRED_FAC_MR122; */

            temp = add (mean_lsf[i], mult (st->past_r_q[i],
                                           LSP_PRED_FAC_MR122));

            st->past_r_q[i] = sub (lsf2_q[i], temp);
                                                move16 (); 
        }
    }
    else
        /* if good LSFs received */
    {
        /* decode prediction residuals from 5 received indices */

        p_dico = &dico1_lsf[shl (indice[0], 2)];move16 ();
        lsf1_r[0] = *p_dico++;                  move16 (); 
        lsf1_r[1] = *p_dico++;                  move16 (); 
        lsf2_r[0] = *p_dico++;                  move16 (); 
        lsf2_r[1] = *p_dico++;                  move16 (); 

        p_dico = &dico2_lsf[shl (indice[1], 2)];move16 ();
        lsf1_r[2] = *p_dico++;                  move16 (); 
        lsf1_r[3] = *p_dico++;                  move16 (); 
        lsf2_r[2] = *p_dico++;                  move16 (); 
        lsf2_r[3] = *p_dico++;                  move16 (); 

        sign = indice[2] & 1;                   logic16 (); 
        i = shr (indice[2], 1);
        p_dico = &dico3_lsf[shl (i, 2)];        move16 (); 

        test (); 
        if (sign == 0)
        {
            lsf1_r[4] = *p_dico++;              move16 (); 
            lsf1_r[5] = *p_dico++;              move16 (); 
            lsf2_r[4] = *p_dico++;              move16 (); 
            lsf2_r[5] = *p_dico++;              move16 (); 
        }
        else
        {
            lsf1_r[4] = negate (*p_dico++);     move16 (); 
            lsf1_r[5] = negate (*p_dico++);     move16 (); 
            lsf2_r[4] = negate (*p_dico++);     move16 (); 
            lsf2_r[5] = negate (*p_dico++);     move16 (); 
        }

        p_dico = &dico4_lsf[shl (indice[3], 2)];move16 (); 
        lsf1_r[6] = *p_dico++;                  move16 (); 
        lsf1_r[7] = *p_dico++;                  move16 (); 
        lsf2_r[6] = *p_dico++;                  move16 (); 
        lsf2_r[7] = *p_dico++;                  move16 (); 

        p_dico = &dico5_lsf[shl (indice[4], 2)];move16 (); 
        lsf1_r[8] = *p_dico++;                  move16 (); 
        lsf1_r[9] = *p_dico++;                  move16 (); 
        lsf2_r[8] = *p_dico++;                  move16 (); 
        lsf2_r[9] = *p_dico++;                  move16 (); 

        /* Compute quantized LSFs and update the past quantized residual */
        for (i = 0; i < M; i++)
        {
            temp = add (mean_lsf[i], mult (st->past_r_q[i],
                                           LSP_PRED_FAC_MR122));
            lsf1_q[i] = add (lsf1_r[i], temp);
                                                move16 (); 
            lsf2_q[i] = add (lsf2_r[i], temp);
                                                move16 (); 
            st->past_r_q[i] = lsf2_r[i];        move16 (); 
        }
    }

    /* verification that LSFs have minimum distance of LSF_GAP Hz */

    Reorder_lsf (lsf1_q, LSF_GAP, M);
    Reorder_lsf (lsf2_q, LSF_GAP, M);

    Copy (lsf2_q, st->past_lsf_q, M);

    /*  convert LSFs to the cosine domain */

    Lsf_lsp (lsf1_q, lsp1_q, M);
    Lsf_lsp (lsf2_q, lsp2_q, M);

    return 0;
}