view libtwamr/g_pitch.c @ 585:3c6bf0d26ee7 default tip

TW-TS-005 reader: fix maximum line length bug TW-TS-005 section 4.1 states: The maximum allowed length of each line is 80 characters, not including the OS-specific newline encoding. The implementation of this line length limit in the TW-TS-005 hex file reader function in the present suite was wrong, such that lines of the full maximum length could not be read. Fix it. Note that this bug affects comment lines too, not just actual RTP payloads. Neither Annex A nor Annex B features an RTP payload format that goes to the maximum of 40 bytes, but if a comment line goes to the maximum allowed length of 80 characters not including the terminating newline, the bug will be triggered, necessitating the present fix.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 25 Feb 2025 07:49:28 +0000
parents bd4f660eb75a
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : g_pitch.c
*      Purpose          : Compute the pitch (adaptive codebook) gain.
*
********************************************************************************
*/
/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "g_pitch.h"
 
/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "tw_amr.h"
#include "typedef.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "no_count.h"
#include "cnst.h"
 
/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/
/*************************************************************************
 *
 *  FUNCTION:  G_pitch
 *
 *  PURPOSE:  Compute the pitch (adaptive codebook) gain.
 *            Result in Q14 (NOTE: 12.2 bit exact using Q12) 
 *
 *  DESCRIPTION:
 *      The adaptive codebook gain is given by
 *
 *              g = <x[], y[]> / <y[], y[]>
 *
 *      where x[] is the target vector, y[] is the filtered adaptive
 *      codevector, and <> denotes dot product.
 *      The gain is limited to the range [0,1.2] (=0..19661 Q14)
 *
 *************************************************************************/
Word16 G_pitch     (    /* o : Gain of pitch lag saturated to 1.2       */
    enum Mode mode,     /* i : AMR mode                                 */
    Word16 xn[],        /* i : Pitch target.                            */
    Word16 y1[],        /* i : Filtered adaptive codebook.              */
    Word16 g_coeff[],   /* i : Correlations need for gain quantization  */
    Word16 L_subfr      /* i : Length of subframe.                      */
)
{
    Word16 i;
    Word16 xy, yy, exp_xy, exp_yy, gain;
    Word32 s;

    Word16 scaled_y1[L_SUBFR];   /* Usually dynamic allocation of (L_subfr) */

    /* divide "y1[]" by 4 to avoid overflow */

    for (i = 0; i < L_subfr; i++)
    {
        scaled_y1[i] = shr (y1[i], 2); move16 (); 
    }

    /* Compute scalar product <y1[],y1[]> */

    /* Q12 scaling / MR122 */
    Overflow = 0;                   move16 ();
    s = 1L;                         move32 (); /* Avoid case of all zeros */
    for (i = 0; i < L_subfr; i++)
    {
        s = L_mac (s, y1[i], y1[i]);
    }
    test (); 
    if (Overflow == 0)       /* Test for overflow */
    {
        exp_yy = norm_l (s);
        yy = round (L_shl (s, exp_yy));
    }
    else
    {
        s = 1L;                     move32 (); /* Avoid case of all zeros */
        for (i = 0; i < L_subfr; i++)
        {
            s = L_mac (s, scaled_y1[i], scaled_y1[i]);
        }
        exp_yy = norm_l (s);
        yy = round (L_shl (s, exp_yy));
        exp_yy = sub (exp_yy, 4);
    }
        
    /* Compute scalar product <xn[],y1[]> */
        
    Overflow = 0;                   move16 (); 
    s = 1L;                         move32 (); /* Avoid case of all zeros */
        
    for (i = 0; i < L_subfr; i++)
    {
        s = L_mac(s, xn[i], y1[i]);
    }
    test (); 
    if (Overflow == 0)
    {
        exp_xy = norm_l (s);
        xy = round (L_shl (s, exp_xy));
    }
    else
    {
        s = 1L;                     move32 (); /* Avoid case of all zeros */
        for (i = 0; i < L_subfr; i++)
        {
            s = L_mac (s, xn[i], scaled_y1[i]);
        }
        exp_xy = norm_l (s);
        xy = round (L_shl (s, exp_xy));
        exp_xy = sub (exp_xy, 2);
    }

    g_coeff[0] = yy;                 move16 ();
    g_coeff[1] = sub (15, exp_yy);   move16 ();
    g_coeff[2] = xy;                 move16 ();
    g_coeff[3] = sub (15, exp_xy);   move16 ();
    
    /* If (xy < 4) gain = 0 */

    i = sub (xy, 4);

    test (); 
    if (i < 0)
        return ((Word16) 0);

    /* compute gain = xy/yy */

    xy = shr (xy, 1);                  /* Be sure xy < yy */
    gain = div_s (xy, yy);

    i = sub (exp_xy, exp_yy);      /* Denormalization of division */        
    gain = shr (gain, i);

    /* if(gain >1.2) gain = 1.2 */

    test (); 
    if (sub (gain, 19661) > 0)
    {
        gain = 19661;                   move16 (); 
    }

    test ();
    if (sub(mode, MR122) == 0)
    {
       /* clear 2 LSBits */
       gain = gain & 0xfffC;            logic16 ();
    }

    return (gain);
}