view libtwamr/ph_disp.c @ 585:3c6bf0d26ee7 default tip

TW-TS-005 reader: fix maximum line length bug TW-TS-005 section 4.1 states: The maximum allowed length of each line is 80 characters, not including the OS-specific newline encoding. The implementation of this line length limit in the TW-TS-005 hex file reader function in the present suite was wrong, such that lines of the full maximum length could not be read. Fix it. Note that this bug affects comment lines too, not just actual RTP payloads. Neither Annex A nor Annex B features an RTP payload format that goes to the maximum of 40 bytes, but if a comment line goes to the maximum allowed length of 80 characters not including the terminating newline, the bug will be triggered, necessitating the present fix.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 25 Feb 2025 07:49:28 +0000
parents bde9f5804670
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : ph_disp.c
*      Purpose          : Perform adaptive phase dispersion of the excitation
*                         signal.
*
********************************************************************************
*/
/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "ph_disp.h"

/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "cnst.h"
#include "memops.h"

/*
********************************************************************************
*                         LOCAL VARIABLES AND TABLES
********************************************************************************
*/

#include "ph_disp.tab"

/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/

/*************************************************************************
*
*  Function:   ph_disp_reset
*
**************************************************************************
*/
void ph_disp_reset (ph_dispState *state)
{
   Word16 i;

   for (i=0; i<PHDGAINMEMSIZE; i++)
   {
       state->gainMem[i] = 0;
   }
   state->prevState = 0;
   state->prevCbGain = 0;
   state->lockFull = 0;
   state->onset = 0;          /* assume no onset in start */ 
}

/*************************************************************************
*
*  Function:   ph_disp_lock
*
**************************************************************************
*/
void ph_disp_lock (ph_dispState *state)
{
  state->lockFull = 1;
  return;
}

/*************************************************************************
*
*  Function:   ph_disp_release
*
**************************************************************************
*/
void ph_disp_release (ph_dispState *state)
{
  state->lockFull = 0;
  return;
}


/*************************************************************************
*
*  Function:   ph_disp
*
*              Adaptive phase dispersion; forming of total excitation
*              (for synthesis part of decoder)
*
**************************************************************************
*/
void ph_disp (
      ph_dispState *state, /* i/o     : State struct                     */
      enum Mode mode,      /* i       : codec mode                       */
      Word16 x[],          /* i/o Q0  : in:  LTP excitation signal       */
                           /*           out: total excitation signal     */
      Word16 cbGain,       /* i   Q1  : Codebook gain                    */
      Word16 ltpGain,      /* i   Q14 : LTP gain                         */
      Word16 inno[],       /* i/o Q13 : Innovation vector (Q12 for 12.2) */
      Word16 pitch_fac,    /* i   Q14 : pitch factor used to scale the
                                        LTP excitation (Q13 for 12.2)    */
      Word16 tmp_shift     /* i   Q0  : shift factor applied to sum of   
                                        scaled LTP ex & innov. before
                                        rounding                         */
)
{
   Word16 i, i1;
   Word16 tmp1;
   Word32 L_temp;
   Word16 impNr;           /* indicator for amount of disp./filter used */

   Word16 inno_sav[L_SUBFR];
   Word16 ps_poss[L_SUBFR];
   Word16 j, nze, nPulse, ppos;
   const Word16 *ph_imp;   /* Pointer to phase dispersion filter */

   /* Update LTP gain memory */
   for (i = PHDGAINMEMSIZE-1; i > 0; i--)
   {
       state->gainMem[i] = state->gainMem[i-1];                    move16 ();
   }
   state->gainMem[0] = ltpGain;                                    move16 ();
   
   /* basic adaption of phase dispersion */
   test ();
   if (sub(ltpGain, PHDTHR2LTP) < 0) {    /* if (ltpGain < 0.9) */
       test ();
       if (sub(ltpGain, PHDTHR1LTP) > 0)
       {  /* if (ltpGain > 0.6 */
          impNr = 1; /* medium dispersion */                      move16 ();
       }
       else
       {
          impNr = 0; /* maximum dispersion */                     move16 ();
       }
   }
   else
   {
      impNr = 2; /* no dispersion */                              move16 ();
   }
   
   /* onset indicator */
   /* onset = (cbGain  > onFact * cbGainMem[0]) */
                                                                   move32 ();
   tmp1 = round(L_shl(L_mult(state->prevCbGain, ONFACTPLUS1), 2));
   test ();
   if (sub(cbGain, tmp1) > 0)
   {
       state->onset = ONLENGTH;                                    move16 ();
   }
   else
   {
       test (); 
       if (state->onset > 0)
       {
           state->onset = sub (state->onset, 1);                   move16 ();
       }
   }
   
   /* if not onset, check ltpGain buffer and use max phase dispersion if
      half or more of the ltpGain-parameters say so */
   test ();
   if (state->onset == 0)
   {
       /* Check LTP gain memory and set filter accordingly */
       i1 = 0;                                                     move16 ();
       for (i = 0; i < PHDGAINMEMSIZE; i++)
       {
           test ();
           if (sub(state->gainMem[i], PHDTHR1LTP) < 0)
           {
               i1 = add (i1, 1);
           }
       }
       test ();
       if (sub(i1, 2) > 0)
       {
           impNr = 0;                                              move16 ();
       }
       
   }
   /* Restrict decrease in phase dispersion to one step if not onset */
   test (); test ();
   if ((sub(impNr, add(state->prevState, 1)) > 0) && (state->onset == 0))
   {
       impNr = sub (impNr, 1);
   }
   /* if onset, use one step less phase dispersion */
   test (); test ();
   if((sub(impNr, 2) < 0) && (state->onset > 0))
   {
       impNr = add (impNr, 1);
   }
   
   /* disable for very low levels */
   test ();
   if(sub(cbGain, 10) < 0)
   {
       impNr = 2;                                                  move16 ();
   }
   
   test ();
   if(sub(state->lockFull, 1) == 0)
   {
       impNr = 0;                                                  move16 ();
   }

   /* update static memory */
   state->prevState = impNr;                                       move16 ();
   state->prevCbGain = cbGain;                                     move16 ();
  
   /* do phase dispersion for all modes but 12.2 and 7.4;
      don't modify the innovation if impNr >=2 (= no phase disp) */
   test (); test (); test(); test();
   if (sub(mode, MR122) != 0 && 
       sub(mode, MR102) != 0 &&
       sub(mode, MR74) != 0 &&
       sub(impNr, 2) < 0)
   {
       /* track pulse positions, save innovation,
          and initialize new innovation          */
       nze = 0;                                                    move16 ();
       for (i = 0; i < L_SUBFR; i++)
       {
           move16 (); test();
           if (inno[i] != 0)
           {
               ps_poss[nze] = i;                                   move16 ();
               nze = add (nze, 1);
           }
           inno_sav[i] = inno[i];                                  move16 ();
           inno[i] = 0;                                            move16 ();
       }
       /* Choose filter corresponding to codec mode and dispersion criterium */
       test ();
       if (sub (mode, MR795) == 0)
       {
           test ();
           if (impNr == 0)
           {
               ph_imp = ph_imp_low_MR795;                            move16 ();
           }
           else
           {
               ph_imp = ph_imp_mid_MR795;                            move16 ();
           }
       }
       else
       {
           test ();
           if (impNr == 0)
           {
               ph_imp = ph_imp_low;                                  move16 ();
           }
           else
           {
               ph_imp = ph_imp_mid;                                  move16 ();
           }
       }
       
       /* Do phase dispersion of innovation */
       for (nPulse = 0; nPulse < nze; nPulse++)
       {
           ppos = ps_poss[nPulse];                                   move16 ();
           
           /* circular convolution with impulse response */
           j = 0;                                                    move16 ();
           for (i = ppos; i < L_SUBFR; i++)
           {
               /* inno[i1] += inno_sav[ppos] * ph_imp[i1-ppos] */
               tmp1 = mult(inno_sav[ppos], ph_imp[j++]);
               inno[i] = add(inno[i], tmp1);                         move16 ();
           }    
           
           for (i = 0; i < ppos; i++)
           {
               /* inno[i] += inno_sav[ppos] * ph_imp[L_SUBFR-ppos+i] */
               tmp1 = mult(inno_sav[ppos], ph_imp[j++]);
               inno[i] = add(inno[i], tmp1);                         move16 ();
           }
       }
   }
       
   /* compute total excitation for synthesis part of decoder
      (using modified innovation if phase dispersion is active) */
   for (i = 0; i < L_SUBFR; i++)
   {
       /* x[i] = gain_pit*x[i] + cbGain*code[i]; */
       L_temp = L_mult (        x[i],    pitch_fac);
                                                /* 12.2: Q0 * Q13 */
                                                /*  7.4: Q0 * Q14 */
       L_temp = L_mac  (L_temp, inno[i], cbGain);
                                                /* 12.2: Q12 * Q1 */
                                                /*  7.4: Q13 * Q1 */
       L_temp = L_shl (L_temp, tmp_shift);                 /* Q16 */           
       x[i] = round (L_temp);                                        move16 (); 
   }

   return;
}