FreeCalypso > hg > gsm-codec-lib
view libtwamr/pitch_ol.c @ 585:3c6bf0d26ee7 default tip
TW-TS-005 reader: fix maximum line length bug
TW-TS-005 section 4.1 states:
The maximum allowed length of each line is 80 characters, not
including the OS-specific newline encoding.
The implementation of this line length limit in the TW-TS-005 hex file
reader function in the present suite was wrong, such that lines of
the full maximum length could not be read. Fix it.
Note that this bug affects comment lines too, not just actual RTP
payloads. Neither Annex A nor Annex B features an RTP payload format
that goes to the maximum of 40 bytes, but if a comment line goes to
the maximum allowed length of 80 characters not including the
terminating newline, the bug will be triggered, necessitating
the present fix.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Tue, 25 Feb 2025 07:49:28 +0000 |
parents | 01c4becb9fda |
children |
line wrap: on
line source
/* ******************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * ******************************************************************************** * * File : pitch_ol.c * Purpose : Compute the open loop pitch lag. * ******************************************************************************** */ /* ******************************************************************************** * MODULE INCLUDE FILE AND VERSION ID ******************************************************************************** */ #include "namespace.h" #include "pitch_ol.h" /* ******************************************************************************** * INCLUDE FILES ******************************************************************************** */ #include "typedef.h" #include "basic_op.h" #include "oper_32b.h" #include "no_count.h" #include "cnst.h" #include "inv_sqrt.h" #include "vad.h" #include "calc_cor.h" #include "hp_max.h" /* ******************************************************************************** * LOCAL VARIABLES AND TABLES ******************************************************************************** */ #define THRESHOLD 27853 /* ******************************************************************************** * LOCAL PROGRAM CODE ******************************************************************************** */ /************************************************************************* * * FUNCTION: Lag_max * * PURPOSE: Find the lag that has maximum correlation of scal_sig[] in a * given delay range. * * DESCRIPTION: * The correlation is given by * cor[t] = <scal_sig[n],scal_sig[n-t]>, t=lag_min,...,lag_max * The functions outputs the maximum correlation after normalization * and the corresponding lag. * *************************************************************************/ static Word16 Lag_max ( /* o : lag found */ vadState *vadSt, /* i/o : VAD state struct */ Word32 corr[], /* i : correlation vector. */ Word16 scal_sig[], /* i : scaled signal. */ Word16 scal_fac, /* i : scaled signal factor. */ Word16 scal_flag, /* i : if 1 use EFR compatible scaling */ Word16 L_frame, /* i : length of frame to compute pitch */ Word16 lag_max, /* i : maximum lag */ Word16 lag_min, /* i : minimum lag */ Word16 *cor_max, /* o : normalized correlation of selected lag */ Word32 *rmax, /* o : max(<s[i]*s[j]>) */ Word32 *r0, /* o : residual energy */ Flag dtx /* i : dtx flag; use dtx=1, do not use dtx=0 */ ) { Word16 i, j; Word16 *p; Word32 max, t0; Word16 max_h, max_l, ener_h, ener_l; Word16 p_max = 0; /* initialization only needed to keep gcc silent */ max = MIN_32; move32 (); p_max = lag_max; move16 (); for (i = lag_max, j = (PIT_MAX-lag_max-1); i >= lag_min; i--, j--) { test (); if (L_sub (corr[-i], max) >= 0) { max = corr[-i]; move32 (); p_max = i; move16 (); } } /* compute energy */ t0 = 0; move32 (); p = &scal_sig[-p_max]; move16 (); for (i = 0; i < L_frame; i++, p++) { t0 = L_mac (t0, *p, *p); } /* 1/sqrt(energy) */ if (dtx) { /* no test() call since this if is only in simulation env */ *rmax = max; move32(); *r0 = t0; move32(); /* check tone */ if (!vadSt->use_vad2) vad_tone_detection (&vadSt->u.v1, max, t0); } t0 = Inv_sqrt (t0); move32 (); /* function result */ test(); if (scal_flag) { t0 = L_shl (t0, 1); } /* max = max/sqrt(energy) */ L_Extract (max, &max_h, &max_l); L_Extract (t0, &ener_h, &ener_l); t0 = Mpy_32 (max_h, max_l, ener_h, ener_l); test(); if (scal_flag) { t0 = L_shr (t0, scal_fac); *cor_max = extract_h (L_shl (t0, 15)); /* divide by 2 */ } else { *cor_max = extract_l(t0); } return (p_max); } /* ******************************************************************************** * PUBLIC PROGRAM CODE ******************************************************************************** */ /************************************************************************* * * FUNCTION: Pitch_ol * * PURPOSE: Compute the open loop pitch lag. * * DESCRIPTION: * The open-loop pitch lag is determined based on the perceptually * weighted speech signal. This is done in the following steps: * - find three maxima of the correlation <sw[n],sw[n-T]>, * dividing the search range into three parts: * pit_min ... 2*pit_min-1 * 2*pit_min ... 4*pit_min-1 * 4*pit_min ... pit_max * - divide each maximum by <sw[n-t], sw[n-t]> where t is the delay at * that maximum correlation. * - select the delay of maximum normalized correlation (among the * three candidates) while favoring the lower delay ranges. * *************************************************************************/ Word16 Pitch_ol ( /* o : open loop pitch lag */ vadState *vadSt, /* i/o : VAD state struct */ enum Mode mode, /* i : coder mode */ Word16 signal[], /* i : signal used to compute the open loop pitch */ /* signal[-pit_max] to signal[-1] should be known */ Word16 pit_min, /* i : minimum pitch lag */ Word16 pit_max, /* i : maximum pitch lag */ Word16 L_frame, /* i : length of frame to compute pitch */ Word16 idx, /* i : frame index */ Flag dtx /* i : dtx flag; use dtx=1, do not use dtx=0 */ ) { Word16 i, j; Word16 max1, max2, max3; Word16 p_max1, p_max2, p_max3; Word16 scal_flag = 0; Word32 t0; Word32 r01, r02, r03; Word32 rmax1, rmax2, rmax3; Word16 corr_hp_max; Word32 corr[PIT_MAX+1], *corr_ptr; /* Scaled signal */ Word16 scaled_signal[L_FRAME + PIT_MAX]; Word16 *scal_sig, scal_fac; if (dtx && !vadSt->use_vad2) { /* no test() call since this if is only in simulation env */ /* update tone detection */ test(); test(); if ((sub(mode, MR475) == 0) || (sub(mode, MR515) == 0)) { vad_tone_detection_update (&vadSt->u.v1, 1); } else { vad_tone_detection_update (&vadSt->u.v1, 0); } } scal_sig = &scaled_signal[pit_max]; move16 (); t0 = 0L; move32 (); for (i = -pit_max; i < L_frame; i++) { t0 = L_mac (t0, signal[i], signal[i]); } /*--------------------------------------------------------* * Scaling of input signal. * * * * if Overflow -> scal_sig[i] = signal[i]>>3 * * else if t0 < 1^20 -> scal_sig[i] = signal[i]<<3 * * else -> scal_sig[i] = signal[i] * *--------------------------------------------------------*/ /*--------------------------------------------------------* * Verification for risk of overflow. * *--------------------------------------------------------*/ test (); if (L_sub (t0, MAX_32) == 0L) /* Test for overflow */ { for (i = -pit_max; i < L_frame; i++) { scal_sig[i] = shr (signal[i], 3); move16 (); } scal_fac = 3; move16 (); } else if (L_sub (t0, (Word32) 1048576L) < (Word32) 0) /* if (t0 < 2^20) */ { test (); for (i = -pit_max; i < L_frame; i++) { scal_sig[i] = shl (signal[i], 3); move16 (); } scal_fac = -3; move16 (); } else { test (); for (i = -pit_max; i < L_frame; i++) { scal_sig[i] = signal[i]; move16 (); } scal_fac = 0; move16 (); } /* calculate all coreelations of scal_sig, from pit_min to pit_max */ corr_ptr = &corr[pit_max]; move32 (); comp_corr (scal_sig, L_frame, pit_max, pit_min, corr_ptr); /*--------------------------------------------------------------------* * The pitch lag search is divided in three sections. * * Each section cannot have a pitch multiple. * * We find a maximum for each section. * * We compare the maximum of each section by favoring small lags. * * * * First section: lag delay = pit_max downto 4*pit_min * * Second section: lag delay = 4*pit_min-1 downto 2*pit_min * * Third section: lag delay = 2*pit_min-1 downto pit_min * *--------------------------------------------------------------------*/ /* mode dependent scaling in Lag_max */ test (); if (sub(mode, MR122) == 0) { scal_flag = 1; move16 (); } else { scal_flag = 0; move16 (); } j = shl (pit_min, 2); p_max1 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame, pit_max, j, &max1, &rmax1, &r01, dtx); i = sub (j, 1); j = shl (pit_min, 1); p_max2 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame, i, j, &max2, &rmax2, &r02, dtx); i = sub (j, 1); p_max3 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame, i, pit_min, &max3, &rmax3, &r03, dtx); if (dtx && !vadSt->use_vad2) { /* no test() call since this if is only in simulation env */ test (); if (sub(idx, 1) == 0) { /* calculate max high-passed filtered correlation of all lags */ hp_max (corr_ptr, scal_sig, L_frame, pit_max, pit_min, &corr_hp_max); /* update complex background detector */ vad_complex_detection_update(&vadSt->u.v1, corr_hp_max); } } /*--------------------------------------------------------------------* * Compare the 3 sections maximum, and favor small lag. * *--------------------------------------------------------------------*/ test (); if (sub (mult (max1, THRESHOLD), max2) < 0) { max1 = max2; move16 (); p_max1 = p_max2; move16 (); if (dtx) { rmax1 = rmax2; move32 (); r01 = r02; move32 (); } } test (); if (sub (mult (max1, THRESHOLD), max3) < 0) { p_max1 = p_max3; move16 (); if (dtx) { rmax1 = rmax3; move32 (); r01 = r03; move32 (); } } if (dtx && vadSt->use_vad2) { /* Save max correlation */ vadSt->u.v2.L_Rmax = L_add(vadSt->u.v2.L_Rmax, rmax1); /* Save max energy */ vadSt->u.v2.L_R0 = L_add(vadSt->u.v2.L_R0, r01); } return (p_max1); }