view libtwamr/q_plsf_5.c @ 585:3c6bf0d26ee7 default tip

TW-TS-005 reader: fix maximum line length bug TW-TS-005 section 4.1 states: The maximum allowed length of each line is 80 characters, not including the OS-specific newline encoding. The implementation of this line length limit in the TW-TS-005 hex file reader function in the present suite was wrong, such that lines of the full maximum length could not be read. Fix it. Note that this bug affects comment lines too, not just actual RTP payloads. Neither Annex A nor Annex B features an RTP payload format that goes to the maximum of 40 bytes, but if a comment line goes to the maximum allowed length of 80 characters not including the terminating newline, the bug will be triggered, necessitating the present fix.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 25 Feb 2025 07:49:28 +0000
parents 128ec87489b6
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : q_plsf_5.c
*      Purpose          : Quantization of 2 sets of LSF parameters using 1st 
*                         order MA prediction and split by 5 matrix
*                         quantization (split-MQ)
*
********************************************************************************
*/
 
/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "q_plsf.h"
 
/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "lsp_lsf.h"
#include "reorder.h"
#include "lsfwt.h"
#include "q_plsf5_tab.h"

/*
********************************************************************************
*                         LOCAL PROGRAM CODE
********************************************************************************
*/
/* Quantization of a 4 dimensional subvector */

static Word16 Vq_subvec (/* o : quantization index,            Q0  */
    Word16 *lsf_r1,      /* i : 1st LSF residual vector,       Q15 */
    Word16 *lsf_r2,      /* i : 2nd LSF residual vector,       Q15 */
    const Word16 *dico,  /* i : quantization codebook,         Q15 */
    Word16 *wf1,         /* i : 1st LSF weighting factors      Q13 */
    Word16 *wf2,         /* i : 2nd LSF weighting factors      Q13 */  
    Word16 dico_size     /* i : size of quantization codebook, Q0  */
)
{
    Word16 index = 0; /* initialization only needed to keep gcc silent */
    Word16 i, temp;
    const Word16 *p_dico;
    Word32 dist_min, dist;

    dist_min = MAX_32;                                  move32 (); 
    p_dico = dico;                                      move16 (); 

    for (i = 0; i < dico_size; i++)
    {
        temp = sub (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = sub (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (L_sub (dist, dist_min) < (Word32) 0)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
        }
    }

    /* Reading the selected vector */

    p_dico = &dico[shl (index, 2)];                     move16 (); 
    lsf_r1[0] = *p_dico++;                              move16 (); 
    lsf_r1[1] = *p_dico++;                              move16 (); 
    lsf_r2[0] = *p_dico++;                              move16 (); 
    lsf_r2[1] = *p_dico++;                              move16 (); 

    return index;
}

/* Quantization of a 4 dimensional subvector with a signed codebook */

static Word16 Vq_subvec_s ( /* o : quantization index            Q0  */
    Word16 *lsf_r1,         /* i : 1st LSF residual vector       Q15 */
    Word16 *lsf_r2,         /* i : and LSF residual vector       Q15 */
    const Word16 *dico,     /* i : quantization codebook         Q15 */
    Word16 *wf1,            /* i : 1st LSF weighting factors     Q13 */
    Word16 *wf2,            /* i : 2nd LSF weighting factors     Q13 */
    Word16 dico_size)       /* i : size of quantization codebook Q0  */  
{
    Word16 index = 0;  /* initialization only needed to keep gcc silent */
    Word16 sign = 0;   /* initialization only needed to keep gcc silent */
    Word16 i, temp;
    const Word16 *p_dico;
    Word32 dist_min, dist;

    dist_min = MAX_32;                                  move32 (); 
    p_dico = dico;                                      move16 (); 

    for (i = 0; i < dico_size; i++)
    {
        /* test positive */

        temp = sub (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = sub (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = sub (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (L_sub (dist, dist_min) < (Word32) 0)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
            sign = 0;                                   move16 (); 
        }
        /* test negative */

        p_dico -= 4;                                    move16 (); 
        temp = add (lsf_r1[0], *p_dico++);
        temp = mult (wf1[0], temp);
        dist = L_mult (temp, temp);

        temp = add (lsf_r1[1], *p_dico++);
        temp = mult (wf1[1], temp);
        dist = L_mac (dist, temp, temp);

        temp = add (lsf_r2[0], *p_dico++);
        temp = mult (wf2[0], temp);
        dist = L_mac (dist, temp, temp);

        temp = add (lsf_r2[1], *p_dico++);
        temp = mult (wf2[1], temp);
        dist = L_mac (dist, temp, temp);

        test (); 
        if (L_sub (dist, dist_min) < (Word32) 0)
        {
            dist_min = dist;                            move32 (); 
            index = i;                                  move16 (); 
            sign = 1;                                   move16 (); 
        }
    }

    /* Reading the selected vector */

    p_dico = &dico[shl (index, 2)];                     move16 (); 
    test (); 
    if (sign == 0)
    {
        lsf_r1[0] = *p_dico++;                          move16 (); 
        lsf_r1[1] = *p_dico++;                          move16 (); 
        lsf_r2[0] = *p_dico++;                          move16 (); 
        lsf_r2[1] = *p_dico++;                          move16 (); 
    }
    else
    {
        lsf_r1[0] = negate (*p_dico++);                 move16 (); 
        lsf_r1[1] = negate (*p_dico++);                 move16 (); 
        lsf_r2[0] = negate (*p_dico++);                 move16 (); 
        lsf_r2[1] = negate (*p_dico++);                 move16 (); 
    }

    index = shl (index, 1);
    index = add (index, sign);

    return index;
}

/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/
 
/*************************************************************************
 *   FUNCTION:  Q_plsf_5()
 *
 *   PURPOSE:  Quantization of 2 sets of LSF parameters using 1st order MA
 *             prediction and split by 5 matrix quantization (split-MQ)
 *
 *   DESCRIPTION:
 *
 *        p[i] = pred_factor*past_rq[i];   i=0,...,m-1
 *        r1[i]= lsf1[i] - p[i];           i=0,...,m-1
 *        r2[i]= lsf2[i] - p[i];           i=0,...,m-1
 *   where:
 *        lsf1[i]           1st mean-removed LSF vector.
 *        lsf2[i]           2nd mean-removed LSF vector.
 *        r1[i]             1st residual prediction vector.
 *        r2[i]             2nd residual prediction vector.
 *        past_r2q[i]       Past quantized residual (2nd vector).
 *
 *   The residual vectors r1[i] and r2[i] are jointly quantized using
 *   split-MQ with 5 codebooks. Each 4th dimension submatrix contains 2
 *   elements from each residual vector. The 5 submatrices are as follows:
 *     {r1[0], r1[1], r2[0], r2[1]};  {r1[2], r1[3], r2[2], r2[3]};
 *     {r1[4], r1[5], r2[4], r2[5]};  {r1[6], r1[7], r2[6], r2[7]};
 *                    {r1[8], r1[9], r2[8], r2[9]};
 *
 *************************************************************************/
void Q_plsf_5 (
    Q_plsfState *st,
    Word16 *lsp1,      /* i : 1st LSP vector,                     Q15 */
    Word16 *lsp2,      /* i : 2nd LSP vector,                     Q15 */   
    Word16 *lsp1_q,    /* o : quantized 1st LSP vector,           Q15 */
    Word16 *lsp2_q,    /* o : quantized 2nd LSP vector,           Q15 */
    Word16 *indice     /* o : quantization indices of 5 matrices, Q0  */
)
{
    Word16 i;
    Word16 lsf1[M], lsf2[M], wf1[M], wf2[M], lsf_p[M], lsf_r1[M], lsf_r2[M];
    Word16 lsf1_q[M], lsf2_q[M];

    /* convert LSFs to normalize frequency domain 0..16384  */

    Lsp_lsf (lsp1, lsf1, M);
    Lsp_lsf (lsp2, lsf2, M);

    /* Compute LSF weighting factors (Q13) */
    
    Lsf_wt (lsf1, wf1);
    Lsf_wt (lsf2, wf2);

    /* Compute predicted LSF and prediction error */

    for (i = 0; i < M; i++)
    {
        lsf_p[i] = add (mean_lsf[i], mult (st->past_rq[i], LSP_PRED_FAC_MR122));
        move16 (); 
        lsf_r1[i] = sub (lsf1[i], lsf_p[i]);           move16 (); 
        lsf_r2[i] = sub (lsf2[i], lsf_p[i]);           move16 (); 
    }

    /*---- Split-MQ of prediction error ----*/

    indice[0] = Vq_subvec (&lsf_r1[0], &lsf_r2[0], dico1_lsf,
                           &wf1[0], &wf2[0], DICO1_SIZE);
                                                        move16 (); 

    indice[1] = Vq_subvec (&lsf_r1[2], &lsf_r2[2], dico2_lsf,
                           &wf1[2], &wf2[2], DICO2_SIZE);
                                                        move16 (); 

    indice[2] = Vq_subvec_s (&lsf_r1[4], &lsf_r2[4], dico3_lsf,
                             &wf1[4], &wf2[4], DICO3_SIZE);
                                                        move16 (); 

    indice[3] = Vq_subvec (&lsf_r1[6], &lsf_r2[6], dico4_lsf,
                           &wf1[6], &wf2[6], DICO4_SIZE);
                                                        move16 (); 

    indice[4] = Vq_subvec (&lsf_r1[8], &lsf_r2[8], dico5_lsf,
                           &wf1[8], &wf2[8], DICO5_SIZE);
                                                        move16 (); 

    /* Compute quantized LSFs and update the past quantized residual */
    for (i = 0; i < M; i++)
    {
        lsf1_q[i] = add (lsf_r1[i], lsf_p[i]);          move16 (); 
        lsf2_q[i] = add (lsf_r2[i], lsf_p[i]);          move16 (); 
        st->past_rq[i] = lsf_r2[i];                     move16 (); 
    }

    /* verification that LSFs has minimum distance of LSF_GAP */

    Reorder_lsf (lsf1_q, LSF_GAP, M);
    Reorder_lsf (lsf2_q, LSF_GAP, M);

    /*  convert LSFs to the cosine domain */
    
    Lsf_lsp (lsf1_q, lsp1_q, M);
    Lsf_lsp (lsf2_q, lsp2_q, M);
}