FreeCalypso > hg > gsm-codec-lib
view libgsmefr/g_pitch.c @ 183:452c1d5a6268
libgsmefr BFI w/o data: emit zero output after decoder reset
In real-life usage, each EFR decoder session will most likely begin
with lots of BFI frames before the first real frame arrives. However,
because the spec-defined home state of the decoder is speech rather
than CN, our regular logic for BFI w/o data would have to feed
pseudorandom noise to the decoder (in the "fixed codebook excitation
pulses" part), which is silly to do at the beginning of the decoder
session right out of reset. Therefore, let's check reset_flag_old,
and if we are still in the reset state, simply emit zero output.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Tue, 03 Jan 2023 00:12:18 +0000 |
parents | d9229fdac1c7 |
children | 827661987b41 |
line wrap: on
line source
/************************************************************************* * * FUNCTION: G_pitch * * PURPOSE: Compute the pitch (adaptive codebook) gain. Result in Q12 * * DESCRIPTION: * The adaptive codebook gain is given by * * g = <x[], y[]> / <y[], y[]> * * where x[] is the target vector, y[] is the filtered adaptive * codevector, and <> denotes dot product. * The gain is limited to the range [0,1.2] * *************************************************************************/ #include "gsm_efr.h" #include "typedef.h" #include "namespace.h" #include "basic_op.h" #include "oper_32b.h" #include "no_count.h" #include "sig_proc.h" #include "codec.h" Word16 G_pitch ( /* (o) : Gain of pitch lag saturated to 1.2 */ Word16 xn[], /* (i) : Pitch target. */ Word16 y1[], /* (i) : Filtered adaptive codebook. */ Word16 L_subfr /* : Length of subframe. */ ) { Word16 i; Word16 xy, yy, exp_xy, exp_yy, gain; Word32 s; Word16 scaled_y1[80]; /* Usually dynamic allocation of (L_subfr) */ /* divide by 2 "y1[]" to avoid overflow */ for (i = 0; i < L_subfr; i++) { scaled_y1[i] = shr (y1[i], 2); move16 (); } /* Compute scalar product <y1[],y1[]> */ s = 0L; move32 (); /* Avoid case of all zeros */ for (i = 0; i < L_subfr; i++) { s = L_mac (s, y1[i], y1[i]); } test (); if (L_sub (s, MAX_32) != 0L) /* Test for overflow */ { s = L_add (s, 1L); /* Avoid case of all zeros */ exp_yy = norm_l (s); yy = round (L_shl (s, exp_yy)); } else { s = 1L; move32 (); /* Avoid case of all zeros */ for (i = 0; i < L_subfr; i++) { s = L_mac (s, scaled_y1[i], scaled_y1[i]); } exp_yy = norm_l (s); yy = round (L_shl (s, exp_yy)); exp_yy = sub (exp_yy, 4); } /* Compute scalar product <xn[],y1[]> */ Overflow = 0; move16 (); s = 1L; move32 (); /* Avoid case of all zeros */ for (i = 0; i < L_subfr; i++) { Carry = 0; move16 (); s = L_macNs (s, xn[i], y1[i]); test (); if (Overflow != 0) { break; } } test (); if (Overflow == 0) { exp_xy = norm_l (s); xy = round (L_shl (s, exp_xy)); } else { s = 1L; move32 (); /* Avoid case of all zeros */ for (i = 0; i < L_subfr; i++) { s = L_mac (s, xn[i], scaled_y1[i]); } exp_xy = norm_l (s); xy = round (L_shl (s, exp_xy)); exp_xy = sub (exp_xy, 2); } /* If (xy < 4) gain = 0 */ i = sub (xy, 4); test (); if (i < 0) return ((Word16) 0); /* compute gain = xy/yy */ xy = shr (xy, 1); /* Be sure xy < yy */ gain = div_s (xy, yy); i = add (exp_xy, 3 - 1); /* Denormalization of division */ i = sub (i, exp_yy); gain = shr (gain, i); /* if(gain >1.2) gain = 1.2 */ test (); if (sub (gain, 4915) > 0) { gain = 4915; move16 (); } return (gain); }