view libgsmfr2/add.c @ 282:9ee8ad3d4d30

frtest: rm gsmfr-hand-test and gsmfr-max-out utils These hack programs were never properly documented and were written only as part of a debug chase, in pursuit of a bug that ultimately turned out to be in our then-hacky patch to osmo-bts-sysmo, before beginning of proper patches in Osmocom. These hack programs need to be dropped from the present sw package because they depend on old libgsm, and we are eliminating that dependency.
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 14 Apr 2024 05:44:47 +0000
parents a7b593e68ac3
children
line wrap: on
line source

/*
 * This C source file has been adapted from TU-Berlin libgsm source,
 * original notice follows:
 *
 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
 * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
 * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
 */

#include <stdint.h>
#include <assert.h>
#include "tw_gsmfr.h"
#include "typedef.h"
#include "ed_state.h"
#include "ed_internal.h"

#define	saturate(x) 	\
	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))

word gsm_add (word a, word b)
{
	longword sum = (longword)a + (longword)b;
	return saturate(sum);
}

word gsm_sub (word a, word b)
{
	longword diff = (longword)a - (longword)b;
	return saturate(diff);
}

word gsm_mult (word a, word b)
{
	if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
	else return SASR( (longword)a * (longword)b, 15 );
}

word gsm_mult_r (word a, word b)
{
	if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
	else {
		longword prod = (longword)a * (longword)b + 16384;
		prod >>= 15;
		return prod & 0xFFFF;
	}
}

word gsm_abs (word a)
{
	return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}

longword gsm_L_mult (word a, word b)
{
	assert( a != MIN_WORD || b != MIN_WORD );
	return ((longword)a * (longword)b) << 1;
}

longword gsm_L_add (longword a, longword b)
{
	if (a < 0) {
		if (b >= 0) return a + b;
		else {
			ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
			return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
		}
	}
	else if (b <= 0) return a + b;
	else {
		ulongword A = (ulongword)a + (ulongword)b;
		return A > MAX_LONGWORD ? MAX_LONGWORD : A;
	}
}

longword gsm_L_sub (longword a, longword b)
{
	if (a >= 0) {
		if (b >= 0) return a - b;
		else {
			/* a>=0, b<0 */

			ulongword A = (ulongword)a + -(b + 1);
			return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
		}
	}
	else if (b <= 0) return a - b;
	else {
		/* a<0, b>0 */

		ulongword A = (ulongword)-(a + 1) + b;
		return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
	}
}

static unsigned char const bitoff[ 256 ] = {
	 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
	 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

word gsm_norm (longword a)
/*
 * the number of left shifts needed to normalize the 32 bit
 * variable L_var1 for positive values on the interval
 *
 * with minimum of
 * minimum of 1073741824  (01000000000000000000000000000000) and
 * maximum of 2147483647  (01111111111111111111111111111111)
 *
 *
 * and for negative values on the interval with
 * minimum of -2147483648 (-10000000000000000000000000000000) and
 * maximum of -1073741824 ( -1000000000000000000000000000000).
 *
 * in order to normalize the result, the following
 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
 *
 * (That's 'ffs', only from the left, not the right..)
 */
{
	assert(a != 0);

	if (a < 0) {
		if (a <= -1073741824) return 0;
		a = ~a;
	}

	return    a & 0xffff0000
		? ( a & 0xff000000
		  ?  -1 + bitoff[ 0xFF & (a >> 24) ]
		  :   7 + bitoff[ 0xFF & (a >> 16) ] )
		: ( a & 0xff00
		  ?  15 + bitoff[ 0xFF & (a >> 8) ]
		  :  23 + bitoff[ 0xFF & a ] );
}

longword gsm_L_asl (longword a, int n)
{
	if (n >= 32) return 0;
	if (n <= -32) return -(a < 0);
	if (n < 0) return gsm_L_asr(a, -n);
	return a << n;
}

word gsm_asl (word a, int n)
{
	if (n >= 16) return 0;
	if (n <= -16) return -(a < 0);
	if (n < 0) return gsm_asr(a, -n);
	return a << n;
}

longword gsm_L_asr (longword a, int n)
{
	if (n >= 32) return -(a < 0);
	if (n <= -32) return 0;
	if (n < 0) return a << -n;

#	ifdef	SASR
		return a >> n;
#	else
		if (a >= 0) return a >> n;
		else return -(longword)( -(ulongword)a >> n );
#	endif
}

word gsm_asr (word a, int n)
{
	if (n >= 16) return -(a < 0);
	if (n <= -16) return 0;
	if (n < 0) return a << -n;

#	ifdef	SASR
		return a >> n;
#	else
		if (a >= 0) return a >> n;
		else return -(word)( -(uword)a >> n );
#	endif
}

/*
 *  (From p. 46, end of section 4.2.5)
 *
 *  NOTE: The following lines gives [sic] one correct implementation
 *  	  of the div(num, denum) arithmetic operation.  Compute div
 *        which is the integer division of num by denum: with denum
 *	  >= num > 0
 */

word gsm_div (word num, word denum)
{
	longword	L_num   = num;
	longword	L_denum = denum;
	word		div 	= 0;
	int		k 	= 15;

	/* The parameter num sometimes becomes zero.
	 * Although this is explicitly guarded against in 4.2.5,
	 * we assume that the result should then be zero as well.
	 */

	/* assert(num != 0); */

	assert(num >= 0 && denum >= num);
	if (num == 0)
	    return 0;

	while (k--) {
		div   <<= 1;
		L_num <<= 1;

		if (L_num >= L_denum) {
			L_num -= L_denum;
			div++;
		}
	}

	return div;
}