view libtwamr/pitch_ol.c @ 502:b0333fa167c3

libgsmhr1: compile mathhalf.c
author Mychaela Falconia <falcon@freecalypso.org>
date Wed, 19 Jun 2024 01:06:28 +0000
parents 01c4becb9fda
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : pitch_ol.c
*      Purpose          : Compute the open loop pitch lag.
*
********************************************************************************
*/
/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "pitch_ol.h"
/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "no_count.h"
#include "cnst.h"
#include "inv_sqrt.h"
#include "vad.h"
#include "calc_cor.h"
#include "hp_max.h"
 
/*
********************************************************************************
*                         LOCAL VARIABLES AND TABLES
********************************************************************************
*/
#define THRESHOLD 27853

/*
********************************************************************************
*                         LOCAL PROGRAM CODE
********************************************************************************
*/
/*************************************************************************
 *
 *  FUNCTION:  Lag_max
 *
 *  PURPOSE: Find the lag that has maximum correlation of scal_sig[] in a
 *           given delay range.
 *
 *  DESCRIPTION:
 *      The correlation is given by
 *           cor[t] = <scal_sig[n],scal_sig[n-t]>,  t=lag_min,...,lag_max
 *      The functions outputs the maximum correlation after normalization
 *      and the corresponding lag.
 *
 *************************************************************************/
static Word16 Lag_max ( /* o   : lag found                               */
    vadState *vadSt,    /* i/o : VAD state struct                        */
    Word32 corr[],      /* i   : correlation vector.                     */
    Word16 scal_sig[],  /* i   : scaled signal.                          */    
    Word16 scal_fac,    /* i   : scaled signal factor.                   */
    Word16 scal_flag,   /* i   : if 1 use EFR compatible scaling         */
    Word16 L_frame,     /* i   : length of frame to compute pitch        */
    Word16 lag_max,     /* i   : maximum lag                             */
    Word16 lag_min,     /* i   : minimum lag                             */
    Word16 *cor_max,    /* o   : normalized correlation of selected lag  */
    Word32 *rmax,       /* o   : max(<s[i]*s[j]>)                        */
    Word32 *r0,         /* o   : residual energy                         */
    Flag dtx            /* i   : dtx flag; use dtx=1, do not use dtx=0   */
    )
{
    Word16 i, j;
    Word16 *p;
    Word32 max, t0;
    Word16 max_h, max_l, ener_h, ener_l;
    Word16 p_max = 0; /* initialization only needed to keep gcc silent */
    
    max = MIN_32;               move32 (); 
    p_max = lag_max;            move16 ();
   
    for (i = lag_max, j = (PIT_MAX-lag_max-1); i >= lag_min; i--, j--)  
    {
       test ();  
       if (L_sub (corr[-i], max) >= 0) 
       { 
          max = corr[-i];       move32 ();  
          p_max = i;            move16 ();  
       } 
    }
    
    /* compute energy */

    t0 = 0;                     move32 ();     
    p = &scal_sig[-p_max];      move16 (); 
    for (i = 0; i < L_frame; i++, p++)
    {
        t0 = L_mac (t0, *p, *p);
    }
    /* 1/sqrt(energy) */

    if (dtx)
    {  /* no test() call since this if is only in simulation env */
       *rmax = max;		move32();
       *r0 = t0;		move32();
       /* check tone */
       if (!vadSt->use_vad2)
           vad_tone_detection (&vadSt->u.v1, max, t0);
    }
    
    t0 = Inv_sqrt (t0); move32 (); /* function result */

    test();
    if (scal_flag)
    {
       t0 = L_shl (t0, 1);
    }
    
    /* max = max/sqrt(energy)  */

    L_Extract (max, &max_h, &max_l);
    L_Extract (t0, &ener_h, &ener_l);

    t0 = Mpy_32 (max_h, max_l, ener_h, ener_l);
    
    test();
    if (scal_flag)
    {
      t0 = L_shr (t0, scal_fac);
      *cor_max = extract_h (L_shl (t0, 15)); /* divide by 2 */
    }
    else
    {
      *cor_max = extract_l(t0);
    }

    return (p_max);
}

/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/
/*************************************************************************
 *
 *  FUNCTION:  Pitch_ol
 *
 *  PURPOSE: Compute the open loop pitch lag.
 *
 *  DESCRIPTION:
 *      The open-loop pitch lag is determined based on the perceptually
 *      weighted speech signal. This is done in the following steps:
 *        - find three maxima of the correlation <sw[n],sw[n-T]>,
 *          dividing the search range into three parts:
 *               pit_min ... 2*pit_min-1
 *             2*pit_min ... 4*pit_min-1
 *             4*pit_min ...   pit_max
 *        - divide each maximum by <sw[n-t], sw[n-t]> where t is the delay at
 *          that maximum correlation.
 *        - select the delay of maximum normalized correlation (among the
 *          three candidates) while favoring the lower delay ranges.
 *
 *************************************************************************/
Word16 Pitch_ol (      /* o   : open loop pitch lag                         */
    vadState *vadSt,   /* i/o : VAD state struct                            */
    enum Mode mode,    /* i   : coder mode                                  */
    Word16 signal[],   /* i   : signal used to compute the open loop pitch  */
                       /*    signal[-pit_max] to signal[-1] should be known */
    Word16 pit_min,    /* i   : minimum pitch lag                           */
    Word16 pit_max,    /* i   : maximum pitch lag                           */
    Word16 L_frame,    /* i   : length of frame to compute pitch            */
    Word16 idx,        /* i   : frame index                                 */
    Flag dtx           /* i   : dtx flag; use dtx=1, do not use dtx=0       */
    )
{
    Word16 i, j;
    Word16 max1, max2, max3;
    Word16 p_max1, p_max2, p_max3;
    Word16 scal_flag = 0;
    Word32 t0;
    Word32  r01, r02, r03;
    Word32  rmax1, rmax2, rmax3;
    Word16 corr_hp_max;
    Word32 corr[PIT_MAX+1], *corr_ptr;

    /* Scaled signal */

    Word16 scaled_signal[L_FRAME + PIT_MAX];
    Word16 *scal_sig, scal_fac;

    if (dtx && !vadSt->use_vad2)
    {  /* no test() call since this if is only in simulation env */
       /* update tone detection */
       test(); test();
       if ((sub(mode, MR475) == 0) || (sub(mode, MR515) == 0))
       {
          vad_tone_detection_update (&vadSt->u.v1, 1);
       }
       else
       {
          vad_tone_detection_update (&vadSt->u.v1, 0);
       }
    }

    scal_sig = &scaled_signal[pit_max]; move16 (); 

    t0 = 0L;                            move32 (); 
    for (i = -pit_max; i < L_frame; i++)
    {
        t0 = L_mac (t0, signal[i], signal[i]);
    }
   
    /*--------------------------------------------------------*
     * Scaling of input signal.                               *
     *                                                        *
     *   if Overflow        -> scal_sig[i] = signal[i]>>3     *
     *   else if t0 < 1^20  -> scal_sig[i] = signal[i]<<3     *
     *   else               -> scal_sig[i] = signal[i]        *
     *--------------------------------------------------------*/

    /*--------------------------------------------------------*
     *  Verification for risk of overflow.                    *
     *--------------------------------------------------------*/

    test ();
    if (L_sub (t0, MAX_32) == 0L)               /* Test for overflow */
    {
        for (i = -pit_max; i < L_frame; i++)
        {
            scal_sig[i] = shr (signal[i], 3);   move16 (); 
        }
        scal_fac = 3;                           move16 (); 
    }
    else if (L_sub (t0, (Word32) 1048576L) < (Word32) 0)
        /* if (t0 < 2^20) */
    {
		test (); 
        for (i = -pit_max; i < L_frame; i++)
        {
            scal_sig[i] = shl (signal[i], 3);   move16 (); 
        }
        scal_fac = -3;                          move16 (); 
    }
    else
    {
		test (); 
        for (i = -pit_max; i < L_frame; i++)
        {
            scal_sig[i] = signal[i];            move16 (); 
        }
        scal_fac = 0;                           move16 (); 
    }

    /* calculate all coreelations of scal_sig, from pit_min to pit_max */
    corr_ptr = &corr[pit_max];                  move32 ();
    comp_corr (scal_sig, L_frame, pit_max, pit_min, corr_ptr); 
    
    /*--------------------------------------------------------------------*
     *  The pitch lag search is divided in three sections.                *
     *  Each section cannot have a pitch multiple.                        *
     *  We find a maximum for each section.                               *
     *  We compare the maximum of each section by favoring small lags.    *
     *                                                                    *
     *  First section:  lag delay = pit_max     downto 4*pit_min          *
     *  Second section: lag delay = 4*pit_min-1 downto 2*pit_min          *
     *  Third section:  lag delay = 2*pit_min-1 downto pit_min            *
     *--------------------------------------------------------------------*/

    /* mode dependent scaling in Lag_max */
    test (); 
    if (sub(mode, MR122) == 0)
    {
       scal_flag = 1;                           move16 (); 
    }
    else
    {
       scal_flag = 0;                           move16 ();    
    } 
    
    j = shl (pit_min, 2);
    p_max1 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame,
                      pit_max, j, &max1, &rmax1, &r01, dtx);

    i = sub (j, 1);
    j = shl (pit_min, 1);
    p_max2 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame,
                      i, j, &max2, &rmax2, &r02, dtx);

    i = sub (j, 1);
    p_max3 = Lag_max (vadSt, corr_ptr, scal_sig, scal_fac, scal_flag, L_frame,
                      i, pit_min, &max3, &rmax3, &r03, dtx);

    if (dtx && !vadSt->use_vad2)
    {  /* no test() call since this if is only in simulation env */
       test ();
       if (sub(idx, 1) == 0)
       {
          /* calculate max high-passed filtered correlation of all lags */
          hp_max (corr_ptr, scal_sig, L_frame, pit_max, pit_min, &corr_hp_max); 
          
          /* update complex background detector */
          vad_complex_detection_update(&vadSt->u.v1, corr_hp_max);
       }
    }

    /*--------------------------------------------------------------------*
     * Compare the 3 sections maximum, and favor small lag.               *
     *--------------------------------------------------------------------*/
    
    test (); 
    if (sub (mult (max1, THRESHOLD), max2) < 0)
    {
        max1 = max2;                       move16 (); 
        p_max1 = p_max2;                   move16 (); 
        if (dtx)
        {
            rmax1 = rmax2;                 move32 ();
            r01 = r02;                     move32 ();
        }
    }
    test (); 
    if (sub (mult (max1, THRESHOLD), max3) < 0)
    {
        p_max1 = p_max3;                   move16 (); 
        if (dtx)
        {
            rmax1 = rmax3;                 move32 ();
            r01 = r03;                     move32 ();
        }
    }

    if (dtx && vadSt->use_vad2)
    {
        /* Save max correlation */
        vadSt->u.v2.L_Rmax = L_add(vadSt->u.v2.L_Rmax, rmax1);
        /* Save max energy */
        vadSt->u.v2.L_R0 =   L_add(vadSt->u.v2.L_R0, r01);
    }

    return (p_max1);
}