view libtwamr/vad2.c @ 502:b0333fa167c3

libgsmhr1: compile mathhalf.c
author Mychaela Falconia <falcon@freecalypso.org>
date Wed, 19 Jun 2024 01:06:28 +0000
parents 0152c069d01f
children
line wrap: on
line source

/*
*****************************************************************************
*                                                                        
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
*****************************************************************************
*
*      File             : vad2.c
*      Purpose          : Voice Activity Detection (VAD) for AMR (option 2)
*
*****************************************************************************
*/

/***************************************************************************
 *
 *   FUNCTION NAME: vad2()
 *
 *   PURPOSE:
 *     This function provides the Voice Activity Detection function option 2
 *     for the Adaptive Multi-rate (AMR) codec.
 *
 *   INPUTS:
 *
 *     farray_ptr
 *                     pointer to Word16[80] input array
 *     vadState2
 *                     pointer to vadState2 state structure
 *
 *   OUTPUTS:
 *
 *     state variables are updated
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     VAD(m) - two successive calls to vad2() yield
 *                     the VAD decision for the 20 ms frame:
 *                     VAD_flag = VAD(m-1) || VAD(m)
 *
 *
 *************************************************************************/

/* Includes */

#include <stdint.h>
#include <string.h>
#include "tw_amr.h"
#include "namespace.h"
#include "typedef.h"
#include "cnst.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "no_count.h"
#include "log2.h"
#include "pow2.h"
#include "vad2.h"


/* Local functions */

/***************************************************************************
 *
 *   FUNCTION NAME: fn10Log10
 *
 *   PURPOSE:
 *     The purpose of this function is to take the 10*log base 10 of input and
 *     divide by 128 and return; i.e. output = 10*log10(input)/128 (scaled as 7,8)
 *
 *   INPUTS:
 *
 *     L_Input
 *                     input (scaled as 31-fbits,fbits)
 *     fbits
 *                     number of fractional bits on input
 *
 *   OUTPUTS:
 *
 *     none
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     output (scaled as 7,8)
 *
 *   DESCRIPTION:
 *
 *     10*log10(x)/128 = 10*(log10(2) * (log2(x<<fbits)-log2(1<<fbits)) >> 7
 *                     = 3.0103 * (log2(x<<fbits) - fbits) >> 7
 *                     = ((3.0103/4.0 * (log2(x<<fbits) - fbits) << 2) >> 7
 *                     = (3.0103/4.0 * (log2(x<<fbits) - fbits) >> 5
 *
 *************************************************************************/

static Word16 fn10Log10 (Word32 L_Input, Word16 fbits)
{

	Word16 integer;		/* Integer part of Log2.   (range: 0<=val<=30) */
	Word16 fraction;	/* Fractional part of Log2. (range: 0<=val<1) */

	Word32 Ltmp;
	Word16 tmp;

        Log2(L_Input, &integer, &fraction);

	integer = sub(integer, fbits);
	Ltmp = Mpy_32_16 (integer, fraction, 24660);	/* 24660 = 10*log10(2)/4 scaled 0,15 */
	Ltmp = L_shr_r(Ltmp, 5+1);			/* extra shift for 30,1 => 15,0 extract correction */
        tmp = extract_l(Ltmp);

        return (tmp);
}


/***************************************************************************
 *
 *   FUNCTION NAME: block_norm
 *
 *   PURPOSE:
 *     The purpose of this function is block normalise the input data sequence
 *
 *   INPUTS:
 *
 *     &in[0]
 *                     pointer to data sequence to be normalised
 *     length
 *                     number of elements in data sequence
 *     headroom
 *                     number of headroom bits (i.e., 
 *
 *   OUTPUTS:
 *
 *     &out[0]
 *                     normalised output data sequence pointed to by &out[0]
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     number of bits sequence was left shifted
 *
 *   DESCRIPTION:
 *
 *                     1) Search for maximum absolute valued data element
 *                     2) Normalise the max element with "headroom"
 *                     3) Transfer/shift the input sequence to the output buffer
 *                     4) Return the number of left shifts
 *
 *   CAVEATS:
 *                     An input sequence of all zeros will return the maximum
 *                     number of left shifts allowed, NOT the value returned
 *                     by a norm_s(0) call, since it desired to associate an
 *                     all zeros sequence with low energy.
 *
 *************************************************************************/

static
Word16 block_norm (Word16 * in, Word16 * out, Word16 length, Word16 headroom)
{

	Word16 i, max, scnt, adata;

        max = abs_s(in[0]);
	for (i = 1; i < length; i++)
	{
                adata = abs_s(in[i]);                           test();
		if (sub(adata, max) > 0)
		{
			max = adata;				move16();
		}
	}
	test();
	if (max != 0)
	{
		scnt = sub(norm_s(max), headroom);
		for (i = 0; i < length; i++)
		{
			out[i] = shl(in[i], scnt);	       	move16();
		}
	}
	else
	{
		scnt = sub(16, headroom);
		for (i = 0; i < length; i++)
		{
			out[i] = 0;                             move16();
		}
	}
	return (scnt);
}


/********************************************* The VAD function ***************************************************/

Word16 vad2 (Word16 * farray_ptr, vadState2 * st)
{

	/*
	 * The channel table is defined below.  In this table, the
	 * lower and higher frequency coefficients for each of the 16
	 * channels are specified.  The table excludes the coefficients
	 * with numbers 0 (DC), 1, and 64 (Foldover frequency).
	 */

	static const Word16 ch_tbl[NUM_CHAN][2] =
	{

		{2, 3},
		{4, 5},
		{6, 7},
		{8, 9},
		{10, 11},
		{12, 13},
		{14, 16},
		{17, 19},
		{20, 22},
		{23, 26},
		{27, 30},
		{31, 35},
		{36, 41},
		{42, 48},
		{49, 55},
		{56, 63}

	};

	/* channel energy scaling table - allows efficient division by number
         * of DFT bins in the channel: 1/2, 1/3, 1/4, etc.
	 */

	static const Word16 ch_tbl_sh[NUM_CHAN] =
	{
		16384, 16384, 16384, 16384, 16384, 16384, 10923, 10923,
		10923, 8192, 8192, 6554, 5461, 4681, 4681, 4096
	};

	/*
	 * The voice metric table is defined below.  It is a non-
	 * linear table with a deadband near zero.  It maps the SNR
	 * index (quantized SNR value) to a number that is a measure
	 * of voice quality.
	 */

	static const Word16 vm_tbl[90] =
	{
		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
		3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7,
		8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15,
		15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24,
		24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34,
		35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45,
		46, 47, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50,
		50, 50
	};

	/* hangover as a function of peak SNR (3 dB steps) */
	static const Word16 hangover_table[20] =
	{
		30, 30, 30, 30, 30, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 8, 8, 8
	};

	/* burst sensitivity as a function of peak SNR (3 dB steps) */
	static const Word16 burstcount_table[20] =
	{
		8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4
	};

	/* voice metric sensitivity as a function of peak SNR (3 dB steps) */
	static const Word16 vm_threshold_table[20] =
	{
                34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 40, 51, 71, 100, 139, 191, 257, 337, 432
	};


	/* State tables that use 22,9 or 27,4 scaling for ch_enrg[] */

	static const Word16 noise_floor_chan[2] =	{NOISE_FLOOR_CHAN_0, NOISE_FLOOR_CHAN_1};
	static const Word16 min_chan_enrg[2] =	{MIN_CHAN_ENRG_0, MIN_CHAN_ENRG_1};
	static const Word16 ine_noise[2] = 		{INE_NOISE_0, INE_NOISE_1};
	static const Word16 fbits[2] = 		{FRACTIONAL_BITS_0, FRACTIONAL_BITS_1};
	static const Word16 state_change_shift_r[2] = {STATE_1_TO_0_SHIFT_R, STATE_0_TO_1_SHIFT_R};

	/* Energy scale table given 30,1 input scaling (also account for -6 dB shift on input) */
	static const Word16 enrg_norm_shift[2] = 	{(FRACTIONAL_BITS_0-1+2), (FRACTIONAL_BITS_1-1+2)};


	/* Automatic variables */

	Word32 Lenrg;				/* scaled as 30,1 */
	Word32 Ltne;				/* scaled as 22,9 */
	Word32 Ltce;				/* scaled as 22,9 or 27,4 */

	Word16 tne_db;				/* scaled as 7,8 */
	Word16 tce_db;				/* scaled as 7,8 */

	Word16 input_buffer[FRM_LEN];		/* used for block normalising input data */
	Word16 data_buffer[FFT_LEN];		/* used for in-place FFT */

	Word16 ch_snr[NUM_CHAN];		/* scaled as 7,8 */
	Word16 ch_snrq;				/* scaled as 15,0 (in 0.375 dB steps) */
	Word16 vm_sum;				/* scaled as 15,0 */
	Word16 ch_enrg_dev;			/* scaled as 7,8 */

	Word32 Lpeak;				/* maximum channel energy */
	Word16 p2a_flag;			/* flag to indicate spectral peak-to-average ratio > 10 dB */

	Word16 ch_enrg_db[NUM_CHAN];		/* scaled as 7,8 */
	Word16 ch_noise_db;			/* scaled as 7,8 */

	Word16 alpha;				/* scaled as 0,15 */
	Word16 one_m_alpha;			/* scaled as 0,15 */
	Word16 update_flag;			/* set to indicate a background noise estimate update */

	Word16 i, j, j1, j2;			/* Scratch variables */
	Word16 hi1, lo1;

	Word32 Ltmp, Ltmp1, Ltmp2;
	Word16 tmp;

	Word16 normb_shift;		/* block norm shift count */

	Word16 ivad;			/* intermediate VAD decision (return value) */
	Word16 tsnrq;			/* total signal-to-noise ratio (quantized 3 dB steps) scaled as 15,0 */
	Word16 xt;			/* instantaneous frame SNR in dB, scaled as 7,8 */

	Word16 state_change;


	/* Increment frame counter */
	st->Lframe_cnt = L_add(st->Lframe_cnt, 1);

	/* Block normalize the input */
	normb_shift = block_norm(farray_ptr, input_buffer, FRM_LEN, FFT_HEADROOM);

	/* Pre-emphasize the input data and store in the data buffer with the appropriate offset */
	for (i = 0; i < DELAY; i++)
	{
		data_buffer[i] = 0;									move16();
	}

	st->pre_emp_mem = shr_r(st->pre_emp_mem, sub(st->last_normb_shift, normb_shift));
	st->last_normb_shift = normb_shift;								move16();

	data_buffer[DELAY] = add(input_buffer[0], mult(PRE_EMP_FAC, st->pre_emp_mem));			move16();

	for (i = DELAY + 1, j = 1; i < DELAY + FRM_LEN; i++, j++)
	{
		data_buffer[i] = add(input_buffer[j], mult(PRE_EMP_FAC, input_buffer[j-1]));		move16();
	}
	st->pre_emp_mem = input_buffer[FRM_LEN-1];							move16();

	for (i = DELAY + FRM_LEN; i < FFT_LEN; i++)
	{
		data_buffer[i] = 0;									move16();
	}


	/* Perform FFT on the data buffer */
	r_fft(data_buffer);


	/* Use normb_shift factor to determine the scaling of the energy estimates */
	state_change = 0;										move16();
													test();
	if (st->shift_state == 0)
	{												test();
		if (sub(normb_shift, -FFT_HEADROOM+2) <= 0)
		{
			state_change = 1;								move16();
			st->shift_state = 1;								move16();
		}
	}
	else
	{												test();
		if (sub(normb_shift, -FFT_HEADROOM+5) >= 0)
		{
			state_change = 1;								move16();
			st->shift_state = 0;								move16();
		}
	}

	/* Scale channel energy estimate */								test();
	if (state_change)
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			st->Lch_enrg[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[st->shift_state]);	move32();
		}
	}


	/* Estimate the energy in each channel */
													test();
	if (L_sub(st->Lframe_cnt, 1) == 0)
	{
		alpha = 32767;										move16();
		one_m_alpha = 0;									move16();
	}
	else
	{
		alpha = CEE_SM_FAC;									move16();
		one_m_alpha = ONE_MINUS_CEE_SM_FAC;							move16();
	}

	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Lenrg = 0;										move16();
		j1 = ch_tbl[i][0];									move16();
		j2 = ch_tbl[i][1];									move16();

		for (j = j1; j <= j2; j++)
		{
			Lenrg = L_mac(Lenrg, data_buffer[2 * j], data_buffer[2 * j]);
			Lenrg = L_mac(Lenrg, data_buffer[2 * j + 1], data_buffer[2 * j + 1]);
		}

		/* Denorm energy & scale 30,1 according to the state */
		Lenrg = L_shr_r(Lenrg, sub(shl(normb_shift, 1), enrg_norm_shift[st->shift_state]));

		/* integrate over time: e[i] = (1-alpha)*e[i] + alpha*enrg/num_bins_in_chan */
		tmp = mult(alpha, ch_tbl_sh[i]);
		L_Extract (Lenrg, &hi1, &lo1);
		Ltmp = Mpy_32_16(hi1, lo1, tmp);

		L_Extract (st->Lch_enrg[i], &hi1, &lo1);
		st->Lch_enrg[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, one_m_alpha));			move32();
													test();
		if (L_sub(st->Lch_enrg[i], min_chan_enrg[st->shift_state]) < 0)
		{
			st->Lch_enrg[i] = min_chan_enrg[st->shift_state];				move32();
		}

	}


	/* Compute the total channel energy estimate (Ltce) */
	Ltce = 0;											move16();
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Ltce = L_add(Ltce, st->Lch_enrg[i]);
	}


	/* Calculate spectral peak-to-average ratio, set flag if p2a > 10 dB */
	Lpeak = 0;											move32();
	for (i = LO_CHAN+2; i <= HI_CHAN; i++)	/* Sine waves not valid for low frequencies */
	{												test();
		if (L_sub(st->Lch_enrg [i], Lpeak) > 0)
		{
			Lpeak = st->Lch_enrg [i];							move32();
		}
	}

	/* Set p2a_flag if peak (dB) > average channel energy (dB) + 10 dB */
	/*   Lpeak > Ltce/num_channels * 10^(10/10)                        */
	/*   Lpeak > (10/16)*Ltce                                          */

	L_Extract (Ltce, &hi1, &lo1);
	Ltmp = Mpy_32_16(hi1, lo1, 20480);
													test();
	if (L_sub(Lpeak, Ltmp) > 0)
	{
		p2a_flag = TRUE;									move16();
	}
	else
	{
		p2a_flag = FALSE;									move16();
	}


	/* Initialize channel noise estimate to either the channel energy or fixed level  */
	/*   Scale the energy appropriately to yield state 0 (22,9) scaling for noise */
													test();
	if (L_sub(st->Lframe_cnt, 4) <= 0)
	{												test();
		if (p2a_flag == TRUE)
		{
			for (i = LO_CHAN; i <= HI_CHAN; i++)
			{
				st->Lch_noise[i] = INE_NOISE_0;						move32();
			}
		}
		else
		{
			for (i = LO_CHAN; i <= HI_CHAN; i++)
			{										test();
				if (L_sub(st->Lch_enrg[i], ine_noise[st->shift_state]) < 0)
				{
					st->Lch_noise[i] = INE_NOISE_0;					move32();
				}
				else
				{									test();
					if (st->shift_state == 1)
					{
						st->Lch_noise[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[0]);
													move32();
					}
					else
					{
						st->Lch_noise[i] = st->Lch_enrg[i];			move32();
					}
				}
			}
		}
	}


	/* Compute the channel energy (in dB), the channel SNRs, and the sum of voice metrics */
	vm_sum = 0;											move16();
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		ch_enrg_db[i] = fn10Log10(st->Lch_enrg[i], fbits[st->shift_state]);			move16();
		ch_noise_db = fn10Log10(st->Lch_noise[i], FRACTIONAL_BITS_0);

		ch_snr[i] = sub(ch_enrg_db[i], ch_noise_db);						move16();

		/* quantize channel SNR in 3/8 dB steps (scaled 7,8 => 15,0) */
		/*   ch_snr = round((snr/(3/8))>>8)                          */
		/*          = round(((0.6667*snr)<<2)>>8)                    */
		/*          = round((0.6667*snr)>>6)                         */

		ch_snrq = shr_r(mult(21845, ch_snr[i]), 6);

		/* Accumulate the sum of voice metrics	*/						test();
		if (sub(ch_snrq, 89) < 0)
		{											test();
			if (ch_snrq > 0)
			{
				j = ch_snrq;								move16();
			}
			else
			{
				j = 0;									move16();
			}
		}
		else
		{
			j = 89;										move16();
		}
		vm_sum = add(vm_sum, vm_tbl[j]);
	}


	/* Initialize NOMINAL peak voice energy and average noise energy, calculate instantaneous SNR */ 
												test(),test(),logic16();
	if (L_sub(st->Lframe_cnt, 4) <= 0 || st->fupdate_flag == TRUE)
	{
		/* tce_db = (96 - 22 - 10*log10(64) (due to FFT)) scaled as 7,8 */
		tce_db = 14320;										move16();
		st->negSNRvar = 0;									move16();
		st->negSNRbias = 0;									move16();

		/* Compute the total noise estimate (Ltne) */
		Ltne = 0;										move32();
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			Ltne = L_add(Ltne, st->Lch_noise[i]);
		}

		/* Get total noise in dB */
		tne_db = fn10Log10(Ltne, FRACTIONAL_BITS_0);

		/* Initialise instantaneous and long-term peak signal-to-noise ratios */
		xt = sub(tce_db, tne_db);
		st->tsnr = xt;										move16();
	}
	else
	{
		/* Calculate instantaneous frame signal-to-noise ratio */
		/* xt = 10*log10( sum(2.^(ch_snr*0.1*log2(10)))/length(ch_snr) ) */
		Ltmp1 = 0;										move32();
		for (i=LO_CHAN; i<=HI_CHAN; i++) {
			/* Ltmp2 = ch_snr[i] * 0.1 * log2(10); (ch_snr scaled as 7,8) */
			Ltmp2 = L_shr(L_mult(ch_snr[i], 10885), 8);
			L_Extract(Ltmp2, &hi1, &lo1);
			hi1 = add(hi1, 3);			/* 2^3 to compensate for negative SNR */
			Ltmp1 = L_add(Ltmp1, Pow2(hi1, lo1));
		}
		xt = fn10Log10(Ltmp1, 4+3);			/* average by 16, inverse compensation 2^3 */

		/* Estimate long-term "peak" SNR */							test(),test();
		if (sub(xt, st->tsnr) > 0)
		{
			/* tsnr = 0.9*tsnr + 0.1*xt; */
			st->tsnr = round(L_add(L_mult(29491, st->tsnr), L_mult(3277, xt)));
		}
		/* else if (xt > 0.625*tsnr) */	
		else if (sub(xt, mult(20480, st->tsnr)) > 0)
		{
			/* tsnr = 0.998*tsnr + 0.002*xt; */
			st->tsnr = round(L_add(L_mult(32702, st->tsnr), L_mult(66, xt)));
		}
	}

	/* Quantize the long-term SNR in 3 dB steps, limit to 0 <= tsnrq <= 19 */
	tsnrq = shr(mult(st->tsnr, 10923), 8);

	/* tsnrq = min(19, max(0, tsnrq)); */								test(),test();
	if (sub(tsnrq, 19) > 0)
	{
		tsnrq = 19;										move16();
	}
	else if (tsnrq < 0)
	{
		tsnrq = 0;										move16();
	}

	/* Calculate the negative SNR sensitivity bias */
													test();
	if (xt < 0)
	{
		/* negSNRvar = 0.99*negSNRvar + 0.01*xt*xt; */
		/*   xt scaled as 7,8 => xt*xt scaled as 14,17, shift to 7,8 and round */
		tmp = round(L_shl(L_mult(xt, xt), 7));
		st->negSNRvar = round(L_add(L_mult(32440, st->negSNRvar), L_mult(328, tmp)));

		/* if (negSNRvar > 4.0) negSNRvar = 4.0;  */						test();
		if (sub(st->negSNRvar, 1024) > 0)
		{
			st->negSNRvar = 1024;								move16();
		}

		/* negSNRbias = max(12.0*(negSNRvar - 0.65), 0.0); */
		tmp = mult_r(shl(sub(st->negSNRvar, 166), 4), 24576);					test();

		if (tmp < 0)
		{
			st->negSNRbias = 0;								move16();
		}
		else
		{
			st->negSNRbias = shr(tmp, 8);
		}
	}


	/* Determine VAD as a function of the voice metric sum and quantized SNR */

	tmp = add(vm_threshold_table[tsnrq], st->negSNRbias);						test();
	if (sub(vm_sum, tmp) > 0)
	{
		ivad = 1;										move16();
		st->burstcount = add(st->burstcount, 1);						test();
		if (sub(st->burstcount, burstcount_table[tsnrq]) > 0)
		{
			st->hangover = hangover_table[tsnrq];						move16();
		}
	}
	else
	{
		st->burstcount = 0;									move16();
		st->hangover = sub(st->hangover, 1);							test();
		if (st->hangover <= 0)
		{
			ivad = 0;									move16();
			st->hangover = 0;								move16();
		}
		else
		{
			ivad = 1;									move16();
		}
	}


	/* Calculate log spectral deviation */
	ch_enrg_dev = 0;										move16();
													test();
	if (L_sub(st->Lframe_cnt, 1) == 0)
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			st->ch_enrg_long_db[i] = ch_enrg_db[i];						move16();
		}
	}
	else
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			tmp = abs_s(sub(st->ch_enrg_long_db[i], ch_enrg_db[i]));
			ch_enrg_dev = add(ch_enrg_dev, tmp);
		}
	}

	/*
	 * Calculate long term integration constant as a function of instantaneous SNR
	 * (i.e., high SNR (tsnr dB) -> slower integration (alpha = HIGH_ALPHA),
	 *         low SNR (0 dB) -> faster integration (alpha = LOW_ALPHA)
	 */

	/* alpha = HIGH_ALPHA - ALPHA_RANGE * (tsnr - xt) / tsnr, low <= alpha <= high */
	tmp = sub(st->tsnr, xt);						test(),logic16(),test(),test();
	if (tmp <= 0 || st->tsnr <= 0)
	{
		alpha = HIGH_ALPHA;								move16();
		one_m_alpha = 32768L-HIGH_ALPHA;						move16();
	}
	else if (sub(tmp, st->tsnr) > 0)
	{
		alpha = LOW_ALPHA;								move16();
		one_m_alpha = 32768L-LOW_ALPHA;							move16();
	}
	else
	{
		tmp = div_s(tmp, st->tsnr);
		alpha = sub(HIGH_ALPHA, mult(ALPHA_RANGE, tmp));
		one_m_alpha = sub(32767, alpha);
	}

	/* Calc long term log spectral energy */
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Ltmp1 = L_mult(one_m_alpha, ch_enrg_db[i]);
		Ltmp2 = L_mult(alpha, st->ch_enrg_long_db[i]);
		st->ch_enrg_long_db[i] = round(L_add(Ltmp1, Ltmp2));
	}


	/* Set or clear the noise update flags */
	update_flag = FALSE;										move16();
	st->fupdate_flag = FALSE;									move16();
													test(),test();
	if (sub(vm_sum, UPDATE_THLD) <= 0)
	{												test();
		if (st->burstcount == 0)
		{
			update_flag = TRUE;								move16();
			st->update_cnt = 0;								move16();
		}
	}
	else if (L_sub(Ltce, noise_floor_chan[st->shift_state]) > 0)
	{												test();
		if (sub(ch_enrg_dev, DEV_THLD) < 0)
		{											test();
			if (p2a_flag == FALSE)
			{										test();
				if (st->LTP_flag == FALSE)
				{
					st->update_cnt = add(st->update_cnt, 1);			test();
					if (sub(st->update_cnt, UPDATE_CNT_THLD) >= 0)
					{
						update_flag = TRUE;					move16();
						st->fupdate_flag = TRUE;				move16();
					}
				}
			}
		}
	}
													test();
	if (sub(st->update_cnt, st->last_update_cnt) == 0)
	{
		st->hyster_cnt = add(st->hyster_cnt, 1);
	}
	else
	{
		st->hyster_cnt = 0;									move16();
	}

	st->last_update_cnt = st->update_cnt;								move16();
													test();
	if (sub(st->hyster_cnt, HYSTER_CNT_THLD) > 0)
	{
		st->update_cnt = 0;									move16();
	}


	/* Conditionally update the channel noise estimates */
													test();
	if (update_flag == TRUE)
	{
		/* Check shift state */									test();
		if (st->shift_state == 1)
		{
			/* get factor to shift ch_enrg[] from state 1 to 0 (noise always state 0) */
			tmp = state_change_shift_r[0];							move16();
		}
		else
		{
			/* No shift if already state 0 */
			tmp = 0;									move16();
		}

		/* Update noise energy estimate */
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{											test();
			/* integrate over time: en[i] = (1-alpha)*en[i] + alpha*e[n] */
			/* (extract with shift compensation for state 1) */
			L_Extract (L_shr(st->Lch_enrg[i], tmp), &hi1, &lo1);
			Ltmp = Mpy_32_16(hi1, lo1, CNE_SM_FAC);

			L_Extract (st->Lch_noise[i], &hi1, &lo1);
			st->Lch_noise[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, ONE_MINUS_CNE_SM_FAC));	move32();

			/* Limit low level noise */							test();
			if (L_sub(st->Lch_noise[i], MIN_NOISE_ENRG_0) < 0)
			{
				st->Lch_noise[i] = MIN_NOISE_ENRG_0;					move32();
			}
		}
	}

	return(ivad);
}								/* end of vad2 () */


/**** Other related functions *****/

/***************************************************************************
 *
 *   FUNCTION NAME: vad2_reset()
 *
 *   PURPOSE:
 *     The purpose of this function is to initialise the vad2() state
 *     variables.
 *
 *   INPUTS:
 *
 *     &st
 *                     pointer to data structure of vad2 state variables
 *
 *   OUTPUTS:
 *
 *     none
 *
 *   RETURN VALUE:
 *
 *     none
 *
 *   DESCRIPTION:
 *
 *                     Set all values in vad2 state to zero.  Since it is
 *                     known that all elements in the structure contain
 *                     16 and 32 bit fixed point elements, the initialisation
 *                     is performed by zeroing out the number of bytes in the
 *                     structure divided by two.
 *
 *************************************************************************/

void vad2_reset (vadState2 * st)
{
	memset(st, 0, sizeof(vadState2));
}						/* end of vad2_reset () */