FreeCalypso > hg > gsm-codec-lib
view libtwamr/az_lsp.c @ 556:18aca50d68df default tip
doc/Calypso-TCH-downlink: update for FR1 BFI-with-data
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 11 Oct 2024 01:54:00 +0000 |
parents | 07f936338de1 |
children |
line wrap: on
line source
/* ******************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * ******************************************************************************** * * File : az_lsp.c * Purpose : Compute the LSPs from the LP coefficients * ******************************************************************************** */ /* ******************************************************************************** * MODULE INCLUDE FILE AND VERSION ID ******************************************************************************** */ #include "namespace.h" #include "az_lsp.h" /* ******************************************************************************** * INCLUDE FILES ******************************************************************************** */ #include "typedef.h" #include "basic_op.h" #include "oper_32b.h" #include "no_count.h" #include "cnst.h" /* ******************************************************************************** * LOCAL VARIABLES AND TABLES ******************************************************************************** */ #include "grid.tab" #define NC M/2 /* M = LPC order, NC = M/2 */ /* ******************************************************************************** * LOCAL PROGRAM CODE ******************************************************************************** */ /* ************************************************************************** * * Function : Chebps * Purpose : Evaluates the Chebyshev polynomial series * Description : - The polynomial order is n = m/2 = 5 * - The polynomial F(z) (F1(z) or F2(z)) is given by * F(w) = 2 exp(-j5w) C(x) * where * C(x) = T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2 * and T_m(x) = cos(mw) is the mth order Chebyshev * polynomial ( x=cos(w) ) * Returns : C(x) for the input x. * ************************************************************************** */ static Word16 Chebps (Word16 x, Word16 f[], /* (n) */ Word16 n) { Word16 i, cheb; Word16 b0_h, b0_l, b1_h, b1_l, b2_h, b2_l; Word32 t0; b2_h = 256; move16 (); /* b2 = 1.0 */ b2_l = 0; move16 (); t0 = L_mult (x, 512); /* 2*x */ t0 = L_mac (t0, f[1], 8192); /* + f[1] */ L_Extract (t0, &b1_h, &b1_l); /* b1 = 2*x + f[1] */ for (i = 2; i < n; i++) { t0 = Mpy_32_16 (b1_h, b1_l, x); /* t0 = 2.0*x*b1 */ t0 = L_shl (t0, 1); t0 = L_mac (t0, b2_h, (Word16) 0x8000); /* t0 = 2.0*x*b1 - b2 */ t0 = L_msu (t0, b2_l, 1); t0 = L_mac (t0, f[i], 8192); /* t0 = 2.0*x*b1 - b2 + f[i] */ L_Extract (t0, &b0_h, &b0_l); /* b0 = 2.0*x*b1 - b2 + f[i]*/ b2_l = b1_l; move16 (); /* b2 = b1; */ b2_h = b1_h; move16 (); b1_l = b0_l; move16 (); /* b1 = b0; */ b1_h = b0_h; move16 (); } t0 = Mpy_32_16 (b1_h, b1_l, x); /* t0 = x*b1; */ t0 = L_mac (t0, b2_h, (Word16) 0x8000); /* t0 = x*b1 - b2 */ t0 = L_msu (t0, b2_l, 1); t0 = L_mac (t0, f[i], 4096); /* t0 = x*b1 - b2 + f[i]/2 */ t0 = L_shl (t0, 6); cheb = extract_h (t0); return (cheb); } /* ******************************************************************************** * PUBLIC PROGRAM CODE ******************************************************************************** */ /* ************************************************************************** * * Function : Az_lsp * Purpose : Compute the LSPs from the LP coefficients * ************************************************************************** */ void Az_lsp ( Word16 a[], /* (i) : predictor coefficients (MP1) */ Word16 lsp[], /* (o) : line spectral pairs (M) */ Word16 old_lsp[] /* (i) : old lsp[] (in case not found 10 roots) (M) */ ) { Word16 i, j, nf, ip; Word16 xlow, ylow, xhigh, yhigh, xmid, ymid, xint; Word16 x, y, sign, exp; Word16 *coef; Word16 f1[M / 2 + 1], f2[M / 2 + 1]; Word32 t0; /*-------------------------------------------------------------* * find the sum and diff. pol. F1(z) and F2(z) * * F1(z) <--- F1(z)/(1+z**-1) & F2(z) <--- F2(z)/(1-z**-1) * * * * f1[0] = 1.0; * * f2[0] = 1.0; * * * * for (i = 0; i< NC; i++) * * { * * f1[i+1] = a[i+1] + a[M-i] - f1[i] ; * * f2[i+1] = a[i+1] - a[M-i] + f2[i] ; * * } * *-------------------------------------------------------------*/ f1[0] = 1024; move16 (); /* f1[0] = 1.0 */ f2[0] = 1024; move16 (); /* f2[0] = 1.0 */ for (i = 0; i < NC; i++) { t0 = L_mult (a[i + 1], 8192); /* x = (a[i+1] + a[M-i]) >> 2 */ t0 = L_mac (t0, a[M - i], 8192); x = extract_h (t0); /* f1[i+1] = a[i+1] + a[M-i] - f1[i] */ f1[i + 1] = sub (x, f1[i]);move16 (); t0 = L_mult (a[i + 1], 8192); /* x = (a[i+1] - a[M-i]) >> 2 */ t0 = L_msu (t0, a[M - i], 8192); x = extract_h (t0); /* f2[i+1] = a[i+1] - a[M-i] + f2[i] */ f2[i + 1] = add (x, f2[i]);move16 (); } /*-------------------------------------------------------------* * find the LSPs using the Chebychev pol. evaluation * *-------------------------------------------------------------*/ nf = 0; move16 (); /* number of found frequencies */ ip = 0; move16 (); /* indicator for f1 or f2 */ coef = f1; move16 (); xlow = grid[0]; move16 (); ylow = Chebps (xlow, coef, NC);move16 (); j = 0; test (); test (); /* while ( (nf < M) && (j < grid_points) ) */ while ((sub (nf, M) < 0) && (sub (j, grid_points) < 0)) { j++; xhigh = xlow; move16 (); yhigh = ylow; move16 (); xlow = grid[j]; move16 (); ylow = Chebps (xlow, coef, NC); move16 (); test (); if (L_mult (ylow, yhigh) <= (Word32) 0L) { /* divide 4 times the interval */ for (i = 0; i < 4; i++) { /* xmid = (xlow + xhigh)/2 */ xmid = add (shr (xlow, 1), shr (xhigh, 1)); ymid = Chebps (xmid, coef, NC); move16 (); test (); if (L_mult (ylow, ymid) <= (Word32) 0L) { yhigh = ymid; move16 (); xhigh = xmid; move16 (); } else { ylow = ymid; move16 (); xlow = xmid; move16 (); } } /*-------------------------------------------------------------* * Linear interpolation * * xint = xlow - ylow*(xhigh-xlow)/(yhigh-ylow); * *-------------------------------------------------------------*/ x = sub (xhigh, xlow); y = sub (yhigh, ylow); test (); if (y == 0) { xint = xlow; move16 (); } else { sign = y; move16 (); y = abs_s (y); exp = norm_s (y); y = shl (y, exp); y = div_s ((Word16) 16383, y); t0 = L_mult (x, y); t0 = L_shr (t0, sub (20, exp)); y = extract_l (t0); /* y= (xhigh-xlow)/(yhigh-ylow) */ test (); if (sign < 0) y = negate (y); t0 = L_mult (ylow, y); t0 = L_shr (t0, 11); xint = sub (xlow, extract_l (t0)); /* xint = xlow - ylow*y */ } lsp[nf] = xint; move16 (); xlow = xint; move16 (); nf++; test (); if (ip == 0) { ip = 1; move16 (); coef = f2; move16 (); } else { ip = 0; move16 (); coef = f1; move16 (); } ylow = Chebps (xlow, coef, NC); move16 (); } test (); test (); } /* Check if M roots found */ test (); if (sub (nf, M) < 0) { for (i = 0; i < M; i++) { lsp[i] = old_lsp[i]; move16 (); } } return; }