FreeCalypso > hg > gsm-codec-lib
view libgsmefr/dtx_common.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 13 Feb 2025 10:02:45 +0000 |
parents | 7bc011aceb7f |
children |
line wrap: on
line source
/* * This file is a product of splitting ETSI EFR dtx.c into parts; * the present module is the common part for both the encoder and * the decoder. */ #include "gsm_efr.h" #include "typedef.h" #include "namespace.h" #include "basic_op.h" #include "cnst.h" #include "sig_proc.h" #include "memops.h" #include "no_count.h" #include "dtx.h" #include "dtx_defs.h" /************************************************************************* * * FUNCTION NAME: update_lsf_history * * PURPOSE: Update the LSF parameter history. The LSF parameters kept * in the buffer are used later for computing the reference * LSF parameter vector and the averaged LSF parameter vector. * * INPUTS: lsf1[0..9] LSF vector of the 1st half of the frame * lsf2[0..9] LSF vector of the 2nd half of the frame * lsf_old[0..DTX_HANGOVER-1][0..M-1] * Old LSF history * * OUTPUTS: lsf_old[0..DTX_HANGOVER-1][0..M-1] * Updated LSF history * * RETURN VALUE: none * *************************************************************************/ void update_lsf_history ( Word16 lsf1[M], Word16 lsf2[M], Word16 lsf_old[DTX_HANGOVER][M] ) { Word16 i, j, temp; /* shift LSF data to make room for LSFs from current frame */ /* This can also be implemented by using circular buffering */ for (i = DTX_HANGOVER - 1; i > 0; i--) { for (j = 0; j < M; j++) { lsf_old[i][j] = lsf_old[i - 1][j]; move16 (); } } /* Store new LSF data to lsf_old buffer */ for (i = 0; i < M; i++) { temp = add (shr (lsf1[i], 1), shr (lsf2[i], 1)); lsf_old[0][i] = temp; move16 (); } return; } /************************************************************************* * * FUNCTION NAME: update_lsf_p_CN * * PURPOSE: Update the reference LSF parameter vector. The reference * vector is computed by averaging the quantized LSF parameter * vectors which exist in the LSF parameter history. * * INPUTS: lsf_old[0..DTX_HANGOVER-1][0..M-1] * LSF parameter history * * OUTPUTS: lsf_p_CN[0..9] Computed reference LSF parameter vector * * RETURN VALUE: none * *************************************************************************/ void update_lsf_p_CN ( Word16 lsf_old[DTX_HANGOVER][M], Word16 lsf_p_CN[M] ) { Word16 i, j; Word32 L_temp; for (j = 0; j < M; j++) { L_temp = L_mult (INV_DTX_HANGOVER, lsf_old[0][j]); for (i = 1; i < DTX_HANGOVER; i++) { L_temp = L_mac (L_temp, INV_DTX_HANGOVER, lsf_old[i][j]); } lsf_p_CN[j] = round (L_temp); move16 (); } return; } /************************************************************************* * * FUNCTION NAME: update_gcode0_CN * * PURPOSE: Update the reference fixed codebook gain parameter value. * The reference value is computed by averaging the quantized * fixed codebook gain parameter values which exist in the * fixed codebook gain parameter history. * * INPUTS: gain_code_old[0..4*DTX_HANGOVER-1] * fixed codebook gain parameter history * * OUTPUTS: none * * RETURN VALUE: Computed reference fixed codebook gain * *************************************************************************/ Word16 update_gcode0_CN ( Word16 gain_code_old[4 * DTX_HANGOVER] ) { Word16 i, j; Word32 L_temp, L_ret; L_ret = 0L; move32 (); for (i = 0; i < DTX_HANGOVER; i++) { L_temp = L_mult (0x1fff, gain_code_old[4 * i]); for (j = 1; j < 4; j++) { L_temp = L_mac (L_temp, 0x1fff, gain_code_old[4 * i + j]); } L_ret = L_mac (L_ret, INV_DTX_HANGOVER, extract_h (L_temp)); } return extract_h (L_ret); } /************************************************************************* * * FUNCTION NAME: build_CN_code * * PURPOSE: Compute the comfort noise fixed codebook excitation. The * gains of the pulses are always +/-1. * * INPUTS: *seed Old CN generator shift register state * * OUTPUTS: cod[0..39] Generated comfort noise fixed codebook vector * *seed Updated CN generator shift register state * * RETURN VALUE: none * *************************************************************************/ void build_CN_code ( Word16 cod[], Word32 *seed ) { Word16 i, j, k; for (i = 0; i < L_SUBFR; i++) { cod[i] = 0; move16 (); } for (k = 0; k < NB_PULSE; k++) { i = pseudonoise (seed, 2); /* generate pulse position */ i *= 10; i += k; j = pseudonoise (seed, 1); /* generate sign */ test (); if (j > 0) { cod[i] = 4096; move16 (); } else { cod[i] = -4096; move16 (); } } return; } /************************************************************************* * * FUNCTION NAME: pseudonoise * * PURPOSE: Generate a random integer value to use in comfort noise * generation. The algorithm uses polynomial x^31 + x^3 + 1 * (length of PN sequence is 2^31 - 1). * * INPUTS: *shift_reg Old CN generator shift register state * * * OUTPUTS: *shift_reg Updated CN generator shift register state * * RETURN VALUE: Generated random integer value * *************************************************************************/ Word16 pseudonoise ( Word32 *shift_reg, Word16 no_bits ) { Word16 noise_bits, Sn, i; noise_bits = 0; move16 (); for (i = 0; i < no_bits; i++) { /* State n == 31 */ test (); logic32 (); if ((*shift_reg & 0x00000001L) != 0) { Sn = 1; move16 (); } else { Sn = 0; move16 (); } /* State n == 3 */ test (); logic32 (); if ((*shift_reg & 0x10000000L) != 0) { Sn = Sn ^ 1; logic16 (); } else { Sn = Sn ^ 0; logic16 (); } noise_bits <<= 1; noise_bits |= *shift_reg & 1; *shift_reg = L_shr (*shift_reg, 1); move32 (); if (Sn & 1) { *shift_reg = *shift_reg | 0x40000000L; move32 (); logic32 (); } } return noise_bits; }