view libgsmefr/log2.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents 68f772469ba7
children
line wrap: on
line source

/*************************************************************************
 *
 *   FUNCTION:   Log2()
 *
 *   PURPOSE:   Computes log2(L_x),  where   L_x is positive.
 *              If L_x is negative or zero, the result is 0.
 *
 *   DESCRIPTION:
 *        The function Log2(L_x) is approximated by a table and linear
 *        interpolation. The following steps are used to compute Log2(L_x)
 *
 *           1- Normalization of L_x.
 *           2- exponent = 30-exponent
 *           3- i = bit25-b31 of L_x;  32<=i<=63  (because of normalization).
 *           4- a = bit10-b24
 *           5- i -=32
 *           6- fraction = table[i]<<16 - (table[i] - table[i+1]) * a * 2
 *
 *************************************************************************/

#include "gsm_efr.h"
#include "typedef.h"
#include "namespace.h"
#include "basic_op.h"
#include "no_count.h"
#include "sig_proc.h"

#include "log2.tab"     /* Table for Log2() */

void Log2 (
    Word32 L_x,         /* (i) : input value                                 */
    Word16 *exponent,   /* (o) : Integer part of Log2.   (range: 0<=val<=30) */
    Word16 *fraction    /* (o) : Fractional part of Log2. (range: 0<=val<1) */
)
{
    Word16 exp, i, a, tmp;
    Word32 L_y;

    test (); 
    if (L_x <= (Word32) 0)
    {
        *exponent = 0;          move16 (); 
        *fraction = 0;          move16 (); 
        return;
    }
    exp = norm_l (L_x);
    L_x = L_shl (L_x, exp);     /* L_x is normalized */

    *exponent = sub (30, exp);  move16 (); 

    L_x = L_shr (L_x, 9);
    i = extract_h (L_x);        /* Extract b25-b31 */
    L_x = L_shr (L_x, 1);
    a = extract_l (L_x);        /* Extract b10-b24 of fraction */
    a = a & (Word16) 0x7fff;    logic16 (); 

    i = sub (i, 32);

    L_y = L_deposit_h (table[i]);       /* table[i] << 16        */
    tmp = sub (table[i], table[i + 1]); /* table[i] - table[i+1] */
    L_y = L_msu (L_y, tmp, a);  /* L_y -= tmp*a*2        */

    *fraction = extract_h (L_y);move16 (); 

    return;
}