view libgsmfr2/add.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents a7b593e68ac3
children
line wrap: on
line source

/*
 * This C source file has been adapted from TU-Berlin libgsm source,
 * original notice follows:
 *
 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
 * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
 * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
 */

#include <stdint.h>
#include <assert.h>
#include "tw_gsmfr.h"
#include "typedef.h"
#include "ed_state.h"
#include "ed_internal.h"

#define	saturate(x) 	\
	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))

word gsm_add (word a, word b)
{
	longword sum = (longword)a + (longword)b;
	return saturate(sum);
}

word gsm_sub (word a, word b)
{
	longword diff = (longword)a - (longword)b;
	return saturate(diff);
}

word gsm_mult (word a, word b)
{
	if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
	else return SASR( (longword)a * (longword)b, 15 );
}

word gsm_mult_r (word a, word b)
{
	if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
	else {
		longword prod = (longword)a * (longword)b + 16384;
		prod >>= 15;
		return prod & 0xFFFF;
	}
}

word gsm_abs (word a)
{
	return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}

longword gsm_L_mult (word a, word b)
{
	assert( a != MIN_WORD || b != MIN_WORD );
	return ((longword)a * (longword)b) << 1;
}

longword gsm_L_add (longword a, longword b)
{
	if (a < 0) {
		if (b >= 0) return a + b;
		else {
			ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
			return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
		}
	}
	else if (b <= 0) return a + b;
	else {
		ulongword A = (ulongword)a + (ulongword)b;
		return A > MAX_LONGWORD ? MAX_LONGWORD : A;
	}
}

longword gsm_L_sub (longword a, longword b)
{
	if (a >= 0) {
		if (b >= 0) return a - b;
		else {
			/* a>=0, b<0 */

			ulongword A = (ulongword)a + -(b + 1);
			return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
		}
	}
	else if (b <= 0) return a - b;
	else {
		/* a<0, b>0 */

		ulongword A = (ulongword)-(a + 1) + b;
		return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
	}
}

static unsigned char const bitoff[ 256 ] = {
	 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
	 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

word gsm_norm (longword a)
/*
 * the number of left shifts needed to normalize the 32 bit
 * variable L_var1 for positive values on the interval
 *
 * with minimum of
 * minimum of 1073741824  (01000000000000000000000000000000) and
 * maximum of 2147483647  (01111111111111111111111111111111)
 *
 *
 * and for negative values on the interval with
 * minimum of -2147483648 (-10000000000000000000000000000000) and
 * maximum of -1073741824 ( -1000000000000000000000000000000).
 *
 * in order to normalize the result, the following
 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
 *
 * (That's 'ffs', only from the left, not the right..)
 */
{
	assert(a != 0);

	if (a < 0) {
		if (a <= -1073741824) return 0;
		a = ~a;
	}

	return    a & 0xffff0000
		? ( a & 0xff000000
		  ?  -1 + bitoff[ 0xFF & (a >> 24) ]
		  :   7 + bitoff[ 0xFF & (a >> 16) ] )
		: ( a & 0xff00
		  ?  15 + bitoff[ 0xFF & (a >> 8) ]
		  :  23 + bitoff[ 0xFF & a ] );
}

longword gsm_L_asl (longword a, int n)
{
	if (n >= 32) return 0;
	if (n <= -32) return -(a < 0);
	if (n < 0) return gsm_L_asr(a, -n);
	return a << n;
}

word gsm_asl (word a, int n)
{
	if (n >= 16) return 0;
	if (n <= -16) return -(a < 0);
	if (n < 0) return gsm_asr(a, -n);
	return a << n;
}

longword gsm_L_asr (longword a, int n)
{
	if (n >= 32) return -(a < 0);
	if (n <= -32) return 0;
	if (n < 0) return a << -n;

#	ifdef	SASR
		return a >> n;
#	else
		if (a >= 0) return a >> n;
		else return -(longword)( -(ulongword)a >> n );
#	endif
}

word gsm_asr (word a, int n)
{
	if (n >= 16) return -(a < 0);
	if (n <= -16) return 0;
	if (n < 0) return a << -n;

#	ifdef	SASR
		return a >> n;
#	else
		if (a >= 0) return a >> n;
		else return -(word)( -(uword)a >> n );
#	endif
}

/*
 *  (From p. 46, end of section 4.2.5)
 *
 *  NOTE: The following lines gives [sic] one correct implementation
 *  	  of the div(num, denum) arithmetic operation.  Compute div
 *        which is the integer division of num by denum: with denum
 *	  >= num > 0
 */

word gsm_div (word num, word denum)
{
	longword	L_num   = num;
	longword	L_denum = denum;
	word		div 	= 0;
	int		k 	= 15;

	/* The parameter num sometimes becomes zero.
	 * Although this is explicitly guarded against in 4.2.5,
	 * we assume that the result should then be zero as well.
	 */

	/* assert(num != 0); */

	assert(num >= 0 && denum >= num);
	if (num == 0)
	    return 0;

	while (k--) {
		div   <<= 1;
		L_num <<= 1;

		if (L_num >= L_denum) {
			L_num -= L_denum;
			div++;
		}
	}

	return div;
}