view libgsmfr2/full_dec.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents 3a617e4e9b27
children
line wrap: on
line source

/*
 * This module implements the "full decoder" functionality of libgsmfr2:
 * first the Rx DTX handler, then the regular GSM 06.10 decoder.  This full
 * decoder also implements the optional homing feature, resetting both
 * components upon receiving DHF.
 */

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "tw_gsmfr.h"
#include "typedef.h"
#include "ed_state.h"
#include "pp_state.h"

struct gsmfr_fulldec_state {
	struct gsmfr_0610_state		dec_0610;
	struct gsmfr_preproc_state	rx_dtx;
	int	is_homed;
};

const unsigned gsmfr_fulldec_state_size = sizeof(struct gsmfr_fulldec_state);

struct gsmfr_fulldec_state *gsmfr_fulldec_create(void)
{
	struct gsmfr_fulldec_state *st;

	st = malloc(sizeof(struct gsmfr_fulldec_state));
	if (st)
		gsmfr_fulldec_reset(st);
	return st;
}

void gsmfr_fulldec_reset(struct gsmfr_fulldec_state *st)
{
	gsmfr_0610_reset(&st->dec_0610);
	gsmfr_preproc_reset(&st->rx_dtx);
	st->is_homed = 1;
}

static void emit_ehf_output(int16_t *pcm_out)
{
	unsigned n;

	for (n = 0; n < 160; n++)
		pcm_out[n] = 0x0008;
}

void gsmfr_fulldec_good_frame(struct gsmfr_fulldec_state *st,
			      const uint8_t *frame_in, int16_t *pcm_out)
{
	uint8_t frame_mod[GSMFR_RTP_FRAME_LEN];

	if (st->is_homed && !memcmp(frame_in, gsmfr_decoder_homing_frame, 12)) {
		emit_ehf_output(pcm_out);
		return;
	}
	memcpy(frame_mod, frame_in, GSMFR_RTP_FRAME_LEN);
	gsmfr_preproc_good_frame(&st->rx_dtx, frame_mod);
	gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out);
	if (!memcmp(frame_in, gsmfr_decoder_homing_frame, GSMFR_RTP_FRAME_LEN))
		gsmfr_fulldec_reset(st);
	else
		st->is_homed = 0;
}

void gsmfr_fulldec_bfi(struct gsmfr_fulldec_state *st, int taf,
			int16_t *pcm_out)
{
	uint8_t frame_mod[GSMFR_RTP_FRAME_LEN];

	if (st->is_homed) {
		memset(pcm_out, 0, sizeof(int16_t) * 160);
		return;
	}
	gsmfr_preproc_bfi(&st->rx_dtx, taf, frame_mod);
	gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out);
}

void gsmfr_fulldec_bfi_bits(struct gsmfr_fulldec_state *st,
			    const uint8_t *bad_frame, int taf, int16_t *pcm_out)
{
	uint8_t frame_mod[GSMFR_RTP_FRAME_LEN];

	if (st->is_homed) {
		memset(pcm_out, 0, sizeof(int16_t) * 160);
		return;
	}
	gsmfr_preproc_bfi_bits(&st->rx_dtx, bad_frame, taf, frame_mod);
	gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out);
}