FreeCalypso > hg > gsm-codec-lib
view libgsmfr2/full_dec.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 13 Feb 2025 10:02:45 +0000 |
parents | 3a617e4e9b27 |
children |
line wrap: on
line source
/* * This module implements the "full decoder" functionality of libgsmfr2: * first the Rx DTX handler, then the regular GSM 06.10 decoder. This full * decoder also implements the optional homing feature, resetting both * components upon receiving DHF. */ #include <stdint.h> #include <stdlib.h> #include <string.h> #include "tw_gsmfr.h" #include "typedef.h" #include "ed_state.h" #include "pp_state.h" struct gsmfr_fulldec_state { struct gsmfr_0610_state dec_0610; struct gsmfr_preproc_state rx_dtx; int is_homed; }; const unsigned gsmfr_fulldec_state_size = sizeof(struct gsmfr_fulldec_state); struct gsmfr_fulldec_state *gsmfr_fulldec_create(void) { struct gsmfr_fulldec_state *st; st = malloc(sizeof(struct gsmfr_fulldec_state)); if (st) gsmfr_fulldec_reset(st); return st; } void gsmfr_fulldec_reset(struct gsmfr_fulldec_state *st) { gsmfr_0610_reset(&st->dec_0610); gsmfr_preproc_reset(&st->rx_dtx); st->is_homed = 1; } static void emit_ehf_output(int16_t *pcm_out) { unsigned n; for (n = 0; n < 160; n++) pcm_out[n] = 0x0008; } void gsmfr_fulldec_good_frame(struct gsmfr_fulldec_state *st, const uint8_t *frame_in, int16_t *pcm_out) { uint8_t frame_mod[GSMFR_RTP_FRAME_LEN]; if (st->is_homed && !memcmp(frame_in, gsmfr_decoder_homing_frame, 12)) { emit_ehf_output(pcm_out); return; } memcpy(frame_mod, frame_in, GSMFR_RTP_FRAME_LEN); gsmfr_preproc_good_frame(&st->rx_dtx, frame_mod); gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out); if (!memcmp(frame_in, gsmfr_decoder_homing_frame, GSMFR_RTP_FRAME_LEN)) gsmfr_fulldec_reset(st); else st->is_homed = 0; } void gsmfr_fulldec_bfi(struct gsmfr_fulldec_state *st, int taf, int16_t *pcm_out) { uint8_t frame_mod[GSMFR_RTP_FRAME_LEN]; if (st->is_homed) { memset(pcm_out, 0, sizeof(int16_t) * 160); return; } gsmfr_preproc_bfi(&st->rx_dtx, taf, frame_mod); gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out); } void gsmfr_fulldec_bfi_bits(struct gsmfr_fulldec_state *st, const uint8_t *bad_frame, int taf, int16_t *pcm_out) { uint8_t frame_mod[GSMFR_RTP_FRAME_LEN]; if (st->is_homed) { memset(pcm_out, 0, sizeof(int16_t) * 160); return; } gsmfr_preproc_bfi_bits(&st->rx_dtx, bad_frame, taf, frame_mod); gsmfr_0610_decode_frame(&st->dec_0610, frame_mod, pcm_out); }