view libgsmfr2/long_term.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents 65d3304502bd
children
line wrap: on
line source

/*
 * This C source file has been adapted from TU-Berlin libgsm source,
 * original notice follows:
 *
 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
 * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
 * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
 */

#include <stdint.h>
#include <assert.h>
#include "tw_gsmfr.h"
#include "typedef.h"
#include "ed_state.h"
#include "ed_internal.h"

/*
 *  4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
 */


/*
 * This module computes the LTP gain (bc) and the LTP lag (Nc)
 * for the long term analysis filter.   This is done by calculating a
 * maximum of the cross-correlation function between the current
 * sub-segment short term residual signal d[0..39] (output of
 * the short term analysis filter; for simplification the index
 * of this array begins at 0 and ends at 39 for each sub-segment of the
 * RPE-LTP analysis) and the previous reconstructed short term
 * residual signal dp[ -120 .. -1 ].  A dynamic scaling must be
 * performed to avoid overflow.
 */

static void Calculation_of_the_LTP_parameters (
	register word	* d,		/* [0..39]	IN	*/
	register word	* dp,		/* [-120..-1]	IN	*/
	word		* bc_out,	/* 		OUT	*/
	word		* Nc_out	/* 		OUT	*/
)
{
	register int  	k, lambda;
	word		Nc, bc;
	word		wt[40];

	longword	L_max, L_power;
	word		R, S, dmax, scal;
	register word	temp;

	/*  Search of the optimum scaling of d[0..39].
	 */
	dmax = 0;

	for (k = 0; k <= 39; k++) {
		temp = d[k];
		temp = GSM_ABS( temp );
		if (temp > dmax) dmax = temp;
	}

	temp = 0;
	if (dmax == 0) scal = 0;
	else {
		assert(dmax > 0);
		temp = gsm_norm( (longword)dmax << 16 );
	}

	if (temp > 6) scal = 0;
	else scal = 6 - temp;

	assert(scal >= 0);

	/*  Initialization of a working array wt
	 */

	for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );

	/* Search for the maximum cross-correlation and coding of the LTP lag
	 */
	L_max = 0;
	Nc    = 40;	/* index for the maximum cross-correlation */

	for (lambda = 40; lambda <= 120; lambda++) {

# undef STEP
#		define STEP(k) 	(longword)wt[k] * dp[k - lambda]

		register longword L_result;

		L_result  = STEP(0)  ; L_result += STEP(1) ;
		L_result += STEP(2)  ; L_result += STEP(3) ;
		L_result += STEP(4)  ; L_result += STEP(5)  ;
		L_result += STEP(6)  ; L_result += STEP(7)  ;
		L_result += STEP(8)  ; L_result += STEP(9)  ;
		L_result += STEP(10) ; L_result += STEP(11) ;
		L_result += STEP(12) ; L_result += STEP(13) ;
		L_result += STEP(14) ; L_result += STEP(15) ;
		L_result += STEP(16) ; L_result += STEP(17) ;
		L_result += STEP(18) ; L_result += STEP(19) ;
		L_result += STEP(20) ; L_result += STEP(21) ;
		L_result += STEP(22) ; L_result += STEP(23) ;
		L_result += STEP(24) ; L_result += STEP(25) ;
		L_result += STEP(26) ; L_result += STEP(27) ;
		L_result += STEP(28) ; L_result += STEP(29) ;
		L_result += STEP(30) ; L_result += STEP(31) ;
		L_result += STEP(32) ; L_result += STEP(33) ;
		L_result += STEP(34) ; L_result += STEP(35) ;
		L_result += STEP(36) ; L_result += STEP(37) ;
		L_result += STEP(38) ; L_result += STEP(39) ;

		if (L_result > L_max) {

			Nc    = lambda;
			L_max = L_result;
		}
	}

	*Nc_out = Nc;

	L_max <<= 1;

	/*  Rescaling of L_max
	 */
	assert(scal <= 100 && scal >=  -100);
	L_max = L_max >> (6 - scal);	/* sub(6, scal) */

	assert( Nc <= 120 && Nc >= 40);

	/*   Compute the power of the reconstructed short term residual
	 *   signal dp[..]
	 */
	L_power = 0;
	for (k = 0; k <= 39; k++) {

		register longword L_temp;

		L_temp   = SASR( dp[k - Nc], 3 );
		L_power += L_temp * L_temp;
	}
	L_power <<= 1;	/* from L_MULT */

	/*  Normalization of L_max and L_power
	 */

	if (L_max <= 0)  {
		*bc_out = 0;
		return;
	}
	if (L_max >= L_power) {
		*bc_out = 3;
		return;
	}

	temp = gsm_norm( L_power );

	R = SASR( L_max   << temp, 16 );
	S = SASR( L_power << temp, 16 );

	/*  Coding of the LTP gain
	 */

	/*  Table 4.3a must be used to obtain the level DLB[i] for the
	 *  quantization of the LTP gain b to get the coded version bc.
	 */
	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
	*bc_out = bc;
}

/* 4.2.12 */

static void Long_term_analysis_filtering (
	word		bc,	/* 					IN  */
	word		Nc,	/* 					IN  */
	register word	* dp,	/* previous d	[-120..-1]		IN  */
	register word	* d,	/* d		[0..39]			IN  */
	register word	* dpp,	/* estimate	[0..39]			OUT */
	register word	* e	/* long term res. signal [0..39]	OUT */
)
/*
 *  In this part, we have to decode the bc parameter to compute
 *  the samples of the estimate dpp[0..39].  The decoding of bc needs the
 *  use of table 4.3b.  The long term residual signal e[0..39]
 *  is then calculated to be fed to the RPE encoding section.
 */
{
	register int      k;
	register longword ltmp;

#	undef STEP
#	define STEP(BP)					\
	for (k = 0; k <= 39; k++) {			\
		dpp[k]  = GSM_MULT_R( BP, dp[k - Nc]);	\
		e[k]	= GSM_SUB( d[k], dpp[k] );	\
	}

	switch (bc) {
	case 0:	STEP(  3277 ); break;
	case 1:	STEP( 11469 ); break;
	case 2: STEP( 21299 ); break;
	case 3: STEP( 32767 ); break;
	}
}

void Gsm_Long_Term_Predictor (		/* 4x for 160 samples */
	struct gsmfr_0610_state	* S,

	word	* d,	/* [0..39]   residual signal	IN	*/
	word	* dp,	/* [-120..-1] d'		IN	*/

	word	* e,	/* [0..39] 			OUT	*/
	word	* dpp,	/* [0..39] 			OUT	*/
	word	* Nc,	/* correlation lag		OUT	*/
	word	* bc	/* gain factor			OUT	*/
)
{
	assert( d  ); assert( dp ); assert( e  );
	assert( dpp); assert( Nc ); assert( bc );

	Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
	Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
}

/* 4.3.2 */
void Gsm_Long_Term_Synthesis_Filtering (
	struct gsmfr_0610_state	* S,

	word			Ncr,
	word			bcr,
	register word		* erp,	   /* [0..39]		  	 IN */
	register word		* drp	   /* [-120..-1] IN, [-120..40] OUT */
)
/*
 *  This procedure uses the bcr and Ncr parameter to realize the
 *  long term synthesis filtering.  The decoding of bcr needs
 *  table 4.3b.
 */
{
	register longword	ltmp;	/* for ADD */
	register int 		k;
	word			brp, drpp, Nr;

	/*  Check the limits of Nr.
	 */
	Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
	S->nrp = Nr;
	assert(Nr >= 40 && Nr <= 120);

	/*  Decoding of the LTP gain bcr
	 */
	brp = gsm_QLB[ bcr ];

	/*  Computation of the reconstructed short term residual
	 *  signal drp[0..39]
	 */
	assert(brp != MIN_WORD);

	for (k = 0; k <= 39; k++) {
		drpp   = GSM_MULT_R( brp, drp[ k - Nr ] );
		drp[k] = GSM_ADD( erp[k], drpp );
	}

	/*
	 *  Update of the reconstructed short term residual signal
	 *  drp[ -1..-120 ]
	 */

	for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
}