FreeCalypso > hg > gsm-codec-lib
view libgsmfr2/lpc.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
| author | Mychaela Falconia <falcon@freecalypso.org> |
|---|---|
| date | Thu, 13 Feb 2025 10:02:45 +0000 |
| parents | 0cfb7c95cce2 |
| children |
line wrap: on
line source
/* * This C source file has been adapted from TU-Berlin libgsm source, * original notice follows: * * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische * Universitaet Berlin. See the accompanying file "COPYRIGHT" for * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. */ #include <stdint.h> #include <assert.h> #include "tw_gsmfr.h" #include "typedef.h" #include "ed_state.h" #include "ed_internal.h" /* * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION */ /* 4.2.4 */ static void Autocorrelation ( word * s, /* [0..159] IN/OUT */ longword * L_ACF) /* [0..8] OUT */ /* * The goal is to compute the array L_ACF[k]. The signal s[i] must * be scaled in order to avoid an overflow situation. */ { register int k, i; word temp, smax, scalauto; /* Dynamic scaling of the array s[0..159] */ /* Search for the maximum. */ smax = 0; for (k = 0; k <= 159; k++) { temp = GSM_ABS( s[k] ); if (temp > smax) smax = temp; } /* Computation of the scaling factor. */ if (smax == 0) scalauto = 0; else { assert(smax > 0); scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */ } /* Scaling of the array s[0...159] */ if (scalauto > 0) { # define SCALE(n) \ case n: for (k = 0; k <= 159; k++) \ s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\ break; switch (scalauto) { SCALE(1) SCALE(2) SCALE(3) SCALE(4) } # undef SCALE } /* Compute the L_ACF[..]. */ { word * sp = s; word sl = *sp; # define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]); # define NEXTI sl = *++sp for (k = 9; k--; L_ACF[k] = 0) ; STEP (0); NEXTI; STEP(0); STEP(1); NEXTI; STEP(0); STEP(1); STEP(2); NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7); for (i = 8; i <= 159; i++) { NEXTI; STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7); STEP(8); } for (k = 9; k--; L_ACF[k] <<= 1) ; } /* Rescaling of the array s[0..159] */ if (scalauto > 0) { assert(scalauto <= 4); for (k = 160; k--; *s++ <<= scalauto) ; } } /* 4.2.5 */ static void Reflection_coefficients ( longword * L_ACF, /* 0...8 IN */ register word * r /* 0...7 OUT */ ) { register int i, m, n; register word temp; register longword ltmp; word ACF[9]; /* 0..8 */ word P[ 9]; /* 0..8 */ word K[ 9]; /* 2..8 */ /* Schur recursion with 16 bits arithmetic. */ if (L_ACF[0] == 0) { for (i = 8; i--; *r++ = 0) ; return; } assert( L_ACF[0] != 0 ); temp = gsm_norm( L_ACF[0] ); assert(temp >= 0 && temp < 32); /* ? overflow ? */ for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 ); /* Initialize array P[..] and K[..] for the recursion. */ for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ]; for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ]; /* Compute reflection coefficients */ for (n = 1; n <= 8; n++, r++) { temp = P[1]; temp = GSM_ABS(temp); if (P[0] < temp) { for (i = n; i <= 8; i++) *r++ = 0; return; } *r = gsm_div( temp, P[0] ); assert(*r >= 0); if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */ assert (*r != MIN_WORD); if (n == 8) return; /* Schur recursion */ temp = GSM_MULT_R( P[1], *r ); P[0] = GSM_ADD( P[0], temp ); for (m = 1; m <= 8 - n; m++) { temp = GSM_MULT_R( K[ m ], *r ); P[m] = GSM_ADD( P[ m+1 ], temp ); temp = GSM_MULT_R( P[ m+1 ], *r ); K[m] = GSM_ADD( K[ m ], temp ); } } } /* 4.2.6 */ static void Transformation_to_Log_Area_Ratios ( register word * r /* 0..7 IN/OUT */ ) /* * The following scaling for r[..] and LAR[..] has been used: * * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1. * LAR[..] = integer( real_LAR[..] * 16384 ); * with -1.625 <= real_LAR <= 1.625 */ { register word temp; register int i; /* Computation of the LAR[0..7] from the r[0..7] */ for (i = 1; i <= 8; i++, r++) { temp = *r; temp = GSM_ABS(temp); assert(temp >= 0); if (temp < 22118) { temp >>= 1; } else if (temp < 31130) { assert( temp >= 11059 ); temp -= 11059; } else { assert( temp >= 26112 ); temp -= 26112; temp <<= 2; } *r = *r < 0 ? -temp : temp; assert( *r != MIN_WORD ); } } /* 4.2.7 */ static void Quantization_and_coding ( register word * LAR /* [0..7] IN/OUT */ ) { register word temp; longword ltmp; /* This procedure needs four tables; the following equations * give the optimum scaling for the constants: * * A[0..7] = integer( real_A[0..7] * 1024 ) * B[0..7] = integer( real_B[0..7] * 512 ) * MAC[0..7] = maximum of the LARc[0..7] * MIC[0..7] = minimum of the LARc[0..7] */ # undef STEP # define STEP( A, B, MAC, MIC ) \ temp = GSM_MULT( A, *LAR ); \ temp = GSM_ADD( temp, B ); \ temp = GSM_ADD( temp, 256 ); \ temp = SASR( temp, 9 ); \ *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \ LAR++; STEP( 20480, 0, 31, -32 ); STEP( 20480, 0, 31, -32 ); STEP( 20480, 2048, 15, -16 ); STEP( 20480, -2560, 15, -16 ); STEP( 13964, 94, 7, -8 ); STEP( 15360, -1792, 7, -8 ); STEP( 8534, -341, 3, -4 ); STEP( 9036, -1144, 3, -4 ); # undef STEP } void Gsm_LPC_Analysis ( struct gsmfr_0610_state *S, word * s, /* 0..159 signals IN/OUT */ word * LARc) /* 0..7 LARc's OUT */ { longword L_ACF[9]; Autocorrelation (s, L_ACF ); Reflection_coefficients (L_ACF, LARc ); Transformation_to_Log_Area_Ratios (LARc); Quantization_and_coding (LARc); }
