view libtwamr/c8_31pf.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents dfd5f159574b
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : c8_31pf.c
*      Purpose          : Searches a 31 bit algebraic codebook containing 
*                       : 8 pulses in a frame of 40 samples.
*                       : in the same manner as GSM-EFR
*
********************************************************************************
*/
/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "c8_31pf.h"
/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "cnst.h"
#include "inv_sqrt.h"
#include "cor_h.h"
#include "set_sign.h"
#include "s10_8pf.h"

/*
********************************************************************************
*                         LOCAL VARIABLES AND TABLES
********************************************************************************
*/
#define NB_PULSE 8

/* define values/representation for output codevector and sign */
#define POS_CODE  8191 
#define NEG_CODE  8191 
#define POS_SIGN  32767
#define NEG_SIGN  (Word16) (-32768L) 

/*
********************************************************************************
*                         LOCAL PROGRAM CODE
********************************************************************************
*/

/*************************************************************************
 *
 *  FUNCTION:  build_code()
 *
 *  PURPOSE: Builds the codeword, the filtered codeword and a 
 *   linear uncombined version of  the index of the
 *           codevector, based on the signs and positions of 8  pulses.
 *
 *************************************************************************/

static void build_code (
    Word16 codvec[],    /* i : position of pulses                           */
    Word16 sign[],      /* i : sign of d[n]                                 */
    Word16 cod[],       /* o : innovative code vector                       */
    Word16 h[],         /* i : impulse response of weighted synthesis filter*/
    Word16 y[],         /* o : filtered innovative code                     */
    Word16 sign_indx[], /* o : signs of 4  pulses (signs only)              */
    Word16 pos_indx[]   /* o : position index of 8 pulses(position only)    */
)
{
    Word16 i, j, k, track, sign_index, pos_index, _sign[NB_PULSE];
    Word16 *p0, *p1, *p2, *p3, *p4, *p5, *p6, *p7;
    Word32 s;

    for (i = 0; i < L_CODE; i++)
    {
        cod[i] = 0;                              move16 (); 
    }
    for (i = 0; i < NB_TRACK_MR102; i++)
    {
        pos_indx[i] = -1;                            move16 (); 
        sign_indx[i] = -1;                            move16 (); 
    }
    
    for (k = 0; k < NB_PULSE; k++)
    {
       /* read pulse position */            
       i = codvec[k];                           move16 ();
       /* read sign           */        
       j = sign[i];                             move16 (); 
       
       pos_index = shr(i, 2);                      /* index = pos/4 */
       track = i & 3;             logic16 ();      /* track = pos%4 */
       
       test (); 
       if (j > 0)
       {
          cod[i] = add (cod[i], POS_CODE);         move16 ();
          _sign[k] = POS_SIGN;                     move16 (); 
          sign_index = 0;  /* bit=0 -> positive pulse */  move16 (); 
       }
       else
       {
          cod[i] = sub (cod[i], NEG_CODE);         move16 ();
          _sign[k] = NEG_SIGN;                     move16 (); 
          sign_index = 1;     move16 (); /* bit=1 => negative pulse */ 
          /* index = add (index, 8); 1 = negative  old code */
       }
       
       test (); move16 ();
       if (pos_indx[track] < 0)
       {   /* first set first NB_TRACK pulses  */
          pos_indx[track] = pos_index;                 move16 (); 
          sign_indx[track] = sign_index;              move16 (); 
       }
       else
       {   /* 2nd row of pulses , test if positions needs to be switched */
          test (); logic16 (); logic16 (); 
          if (((sign_index ^ sign_indx[track]) & 1) == 0)
          {
             /* sign of 1st pulse == sign of 2nd pulse */
             
             test (); 
             if (sub (pos_indx[track], pos_index) <= 0)
             {   /* no swap */
                pos_indx[track + NB_TRACK_MR102] = pos_index;     move16 (); 
             }
             else
             {   /* swap*/
                pos_indx[track + NB_TRACK_MR102] = pos_indx[track];
                move16 (); 
                
                pos_indx[track] = pos_index;         move16 ();
                sign_indx[track] = sign_index;       move16 ();
             }
          }
          else
          {
             /* sign of 1st pulse != sign of 2nd pulse */
             
             test (); 
             if (sub (pos_indx[track], pos_index) <= 0)
             {  /*swap*/
                pos_indx[track + NB_TRACK_MR102] = pos_indx[track];
                move16 (); 
                
                pos_indx[track] = pos_index;         move16 (); 
                sign_indx[track] = sign_index;       move16 (); 
             }
             else
             {   /*no swap */
                pos_indx[track + NB_TRACK_MR102] = pos_index;     move16 (); 
             }
          }
       }
    }
    
    p0 = h - codvec[0];                          move16 (); 
    p1 = h - codvec[1];                          move16 (); 
    p2 = h - codvec[2];                          move16 (); 
    p3 = h - codvec[3];                          move16 (); 
    p4 = h - codvec[4];                          move16 (); 
    p5 = h - codvec[5];                          move16 (); 
    p6 = h - codvec[6];                          move16 (); 
    p7 = h - codvec[7];                          move16 (); 
    
    for (i = 0; i < L_CODE; i++)
    {
       s = 0;                                   move32 (); 
       s = L_mac (s, *p0++, _sign[0]);
       s = L_mac (s, *p1++, _sign[1]);
       s = L_mac (s, *p2++, _sign[2]);
       s = L_mac (s, *p3++, _sign[3]);
       s = L_mac (s, *p4++, _sign[4]);
       s = L_mac (s, *p5++, _sign[5]);
       s = L_mac (s, *p6++, _sign[6]);
       s = L_mac (s, *p7++, _sign[7]);
       y[i] = round (s);                        move16 (); 
    }
}

/*************************************************************************
 *
 *  FUNCTION:  compress_code()
 *
 *  PURPOSE: compression of three indeces [0..9] to one 10 bit index   
 *           minimizing the phase shift of a bit error.
 *
 *************************************************************************/


static Word16 compress10 (
       Word16 pos_indxA, /* i : signs of 4 pulses (signs only)             */
       Word16 pos_indxB,  /* i : position index of 8 pulses (pos only)     */
       Word16 pos_indxC) /* i : position and sign of 8 pulses (compressed) */
{
   Word16 indx, ia,ib,ic;

   ia = shr(pos_indxA, 1);
   ib = extract_l(L_shr(L_mult(shr(pos_indxB, 1), 5), 1));
   ic = extract_l(L_shr(L_mult(shr(pos_indxC, 1), 25), 1));            
   indx = shl(add(ia, add(ib, ic)), 3);
   ia = pos_indxA & 1;                                logic16 ();
   ib = shl((pos_indxB & 1), 1);                      logic16 ();
   ic = shl((pos_indxC & 1), 2);                      logic16 ();
   indx = add(indx , add(ia, add(ib, ic)));  
   
   return indx;

}

/*************************************************************************
 *
 *  FUNCTION:  compress_code()
 *
 *  PURPOSE: compression of the linear codewords to 4+three indeces  
 *           one bit from each pulse is made robust to errors by 
 *           minimizing the phase shift of a bit error.
 *           4 signs (one for each track) 
 *           i0,i4,i1 => one index (7+3) bits, 3   LSBs more robust
 *           i2,i6,i5 => one index (7+3) bits, 3   LSBs more robust
 *           i3,i7    => one index (5+2) bits, 2-3 LSbs more robust
 *
 *************************************************************************/


static void compress_code (
    Word16 sign_indx[], /* i : signs of 4 pulses (signs only)             */
    Word16 pos_indx[],  /* i : position index of 8 pulses (position only) */
    Word16 indx[])      /* o : position and sign of 8 pulses (compressed) */
{
   Word16 i, ia, ib, ic;

   for (i = 0; i < NB_TRACK_MR102; i++)
   {
      indx[i] = sign_indx[i];                            move16 (); 
   }
    
    /* First index 
      indx[NB_TRACK] = (ia/2+(ib/2)*5 +(ic/2)*25)*8 + ia%2 + (ib%2)*2 + (ic%2)*4; */
   move16 (); 
   indx[NB_TRACK_MR102] = compress10(pos_indx[0],pos_indx[4],pos_indx[1]);

    /* Second index       
      indx[NB_TRACK+1] = (ia/2+(ib/2)*5 +(ic/2)*25)*8 + ia%2 + (ib%2)*2 + (ic%2)*4; */
    
   move16 (); 
   indx[NB_TRACK_MR102+1]= compress10(pos_indx[2],pos_indx[6],pos_indx[5]);
    
    /*
      Third index      
      if ((ib/2)%2 == 1)
        indx[NB_TRACK+2] = ((((4-ia/2) + (ib/2)*5)*32+12)/25)*4 + ia%2 + (ib%2)*2;
      else   
        indx[NB_TRACK+2] = ((((ia/2) +   (ib/2)*5)*32+12)/25)*4 + ia%2 + (ib%2)*2;
        */
    
    ib = shr(pos_indx[7], 1) & 1;                        logic16 ();
    test ();
    if (sub(ib, 1) == 0)
       ia = sub(4, shr(pos_indx[3], 1));
    else
       ia = shr(pos_indx[3], 1);

    ib = extract_l(L_shr(L_mult(shr(pos_indx[7], 1), 5), 1));       
    ib = add(shl(add(ia, ib), 5), 12);
    ic = shl(mult(ib, 1311), 2);
    ia = pos_indx[3] & 1;                             logic16 ();
    ib = shl((pos_indx[7] & 1), 1);                   logic16 ();
    indx[NB_TRACK_MR102+2] = add(ia, add(ib, ic));
}


/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/
/*************************************************************************
 *
 *  FUNCTION:  code_8i40_31bits()
 *
 *  PURPOSE:  Searches a 31 bit algebraic codebook containing 8 pulses
 *            in a frame of 40 samples.
 *
 *  DESCRIPTION:
 *    The code contains 8 nonzero pulses: i0...i7.
 *    All pulses can have two possible amplitudes: +1 or -1.
 *    The 40 positions in a subframe are divided into 4 tracks of
 *    interleaved positions. Each track contains two pulses.
 *    The pulses can have the following possible positions:
 *
 *       i0, i4 :  0, 4, 8,  12, 16, 20, 24, 28, 32, 36
 *       i1, i5 :  1, 5, 9,  13, 17, 21, 25, 29, 33, 37
 *       i2, i6 :  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
 *       i3, i7 :  3, 7, 11, 15, 19, 23, 27, 31, 35, 39
 *
 *    Each pair of pulses require 1 bit for their signs. The positions 
 *    are encoded together 3,3 and 2 resulting in   
 *    (7+3) + (7+3) + (5+2) bits for their
 *    positions. This results in a 31 (4 sign and 27 pos) bit codebook.
 *    The function determines the optimal pulse signs and positions, builds
 *    the codevector, and computes the filtered codevector.
 *
 *************************************************************************/

void code_8i40_31bits (
   Word16 x[],        /* i : target vector                                  */
   Word16 cn[],       /* i : residual after long term prediction            */
   Word16 h[],        /* i : impulse response of weighted synthesis
                             filter                                         */
   Word16 cod[],      /* o : algebraic (fixed) codebook excitation          */
   Word16 y[],        /* o : filtered fixed codebook excitation             */
   Word16 indx[]      /* o : 7 Word16, index of 8 pulses (signs+positions)  */
)
{
   Word16 ipos[NB_PULSE], pos_max[NB_TRACK_MR102], codvec[NB_PULSE];
   Word16 dn[L_CODE], sign[L_CODE];
   Word16 rr[L_CODE][L_CODE];
   Word16 linear_signs[NB_TRACK_MR102];
   Word16 linear_codewords[NB_PULSE];

   cor_h_x2 (h, x, dn, 2, NB_TRACK_MR102, STEP_MR102);
   /* 2 = use GSMEFR scaling */

   set_sign12k2 (dn, cn, sign, pos_max, NB_TRACK_MR102, ipos, STEP_MR102);
   /* same setsign alg as GSM-EFR new constants though*/
   
   cor_h (h, sign, rr);
   search_10and8i40 (NB_PULSE, STEP_MR102, NB_TRACK_MR102,
                     dn, rr, ipos, pos_max, codvec);
   
   build_code (codvec, sign, cod, h, y, linear_signs, linear_codewords);
   compress_code (linear_signs, linear_codewords, indx);
   
   return;
}