view libtwamr/d_plsf_5.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents 29769a9b89d3
children
line wrap: on
line source

/*
*****************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
*****************************************************************************
*
*      File             : d_plsf_5.c
*
*****************************************************************************
*/
 
/*
*****************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
*****************************************************************************
*/
#include "namespace.h"
#include "d_plsf.h"
 
/*
*****************************************************************************
*                         INCLUDE FILES
*****************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "lsp_lsf.h"
#include "reorder.h"
#include "cnst.h"
#include "memops.h"
#include "q_plsf5_tab.h"

/*
*****************************************************************************
*                         LOCAL VARIABLES AND TABLES
*****************************************************************************
*/

/* ALPHA    ->  0.95       */
/* ONE_ALPHA-> (1.0-ALPHA) */
#define ALPHA     31128
#define ONE_ALPHA 1639

/*
*--------------------------------------------------*
* Constants (defined in cnst.h)                    *
*--------------------------------------------------*
*  M                    : LPC order
*--------------------------------------------------*
*/
 
/*
*****************************************************************************
*                         PUBLIC PROGRAM CODE
*****************************************************************************
*/
/*
**************************************************************************
*
*  Function    : D_plsf_5
*  Purpose     : Decodes the 2 sets of LSP parameters in a frame 
*                using the received quantization indices.
*
**************************************************************************
*/
int D_plsf_5 (
    D_plsfState *st,    /* i/o: State variables                            */
    Word16 bfi,         /* i  : bad frame indicator (set to 1 if a bad    
                                frame is received)                         */  
    Word16 *indice,     /* i  : quantization indices of 5 submatrices, Q0  */
    Word16 *lsp1_q,     /* o  : quantized 1st LSP vector (M),          Q15 */
    Word16 *lsp2_q      /* o  : quantized 2nd LSP vector (M),          Q15 */
)
{
    Word16 i;
    const Word16 *p_dico;
    Word16 temp, sign;
    Word16 lsf1_r[M], lsf2_r[M];
    Word16 lsf1_q[M], lsf2_q[M];

    test (); 
    if (bfi != 0)                               /* if bad frame */
    {
        /* use the past LSFs slightly shifted towards their mean */

        for (i = 0; i < M; i++)
        {
            /* lsfi_q[i] = ALPHA*st->past_lsf_q[i] + ONE_ALPHA*mean_lsf[i]; */

            lsf1_q[i] = add (mult (st->past_lsf_q[i], ALPHA),
                             mult (mean_lsf[i], ONE_ALPHA));
                                                move16 (); 

            lsf2_q[i] = lsf1_q[i];              move16 (); 
        }

        /* estimate past quantized residual to be used in next frame */

        for (i = 0; i < M; i++)
        {
            /* temp  = mean_lsf[i] +  st->past_r_q[i] * LSP_PRED_FAC_MR122; */

            temp = add (mean_lsf[i], mult (st->past_r_q[i],
                                           LSP_PRED_FAC_MR122));

            st->past_r_q[i] = sub (lsf2_q[i], temp);
                                                move16 (); 
        }
    }
    else
        /* if good LSFs received */
    {
        /* decode prediction residuals from 5 received indices */

        p_dico = &dico1_lsf[shl (indice[0], 2)];move16 ();
        lsf1_r[0] = *p_dico++;                  move16 (); 
        lsf1_r[1] = *p_dico++;                  move16 (); 
        lsf2_r[0] = *p_dico++;                  move16 (); 
        lsf2_r[1] = *p_dico++;                  move16 (); 

        p_dico = &dico2_lsf[shl (indice[1], 2)];move16 ();
        lsf1_r[2] = *p_dico++;                  move16 (); 
        lsf1_r[3] = *p_dico++;                  move16 (); 
        lsf2_r[2] = *p_dico++;                  move16 (); 
        lsf2_r[3] = *p_dico++;                  move16 (); 

        sign = indice[2] & 1;                   logic16 (); 
        i = shr (indice[2], 1);
        p_dico = &dico3_lsf[shl (i, 2)];        move16 (); 

        test (); 
        if (sign == 0)
        {
            lsf1_r[4] = *p_dico++;              move16 (); 
            lsf1_r[5] = *p_dico++;              move16 (); 
            lsf2_r[4] = *p_dico++;              move16 (); 
            lsf2_r[5] = *p_dico++;              move16 (); 
        }
        else
        {
            lsf1_r[4] = negate (*p_dico++);     move16 (); 
            lsf1_r[5] = negate (*p_dico++);     move16 (); 
            lsf2_r[4] = negate (*p_dico++);     move16 (); 
            lsf2_r[5] = negate (*p_dico++);     move16 (); 
        }

        p_dico = &dico4_lsf[shl (indice[3], 2)];move16 (); 
        lsf1_r[6] = *p_dico++;                  move16 (); 
        lsf1_r[7] = *p_dico++;                  move16 (); 
        lsf2_r[6] = *p_dico++;                  move16 (); 
        lsf2_r[7] = *p_dico++;                  move16 (); 

        p_dico = &dico5_lsf[shl (indice[4], 2)];move16 (); 
        lsf1_r[8] = *p_dico++;                  move16 (); 
        lsf1_r[9] = *p_dico++;                  move16 (); 
        lsf2_r[8] = *p_dico++;                  move16 (); 
        lsf2_r[9] = *p_dico++;                  move16 (); 

        /* Compute quantized LSFs and update the past quantized residual */
        for (i = 0; i < M; i++)
        {
            temp = add (mean_lsf[i], mult (st->past_r_q[i],
                                           LSP_PRED_FAC_MR122));
            lsf1_q[i] = add (lsf1_r[i], temp);
                                                move16 (); 
            lsf2_q[i] = add (lsf2_r[i], temp);
                                                move16 (); 
            st->past_r_q[i] = lsf2_r[i];        move16 (); 
        }
    }

    /* verification that LSFs have minimum distance of LSF_GAP Hz */

    Reorder_lsf (lsf1_q, LSF_GAP, M);
    Reorder_lsf (lsf2_q, LSF_GAP, M);

    Copy (lsf2_q, st->past_lsf_q, M);

    /*  convert LSFs to the cosine domain */

    Lsf_lsp (lsf1_q, lsp1_q, M);
    Lsf_lsp (lsf2_q, lsp2_q, M);

    return 0;
}