FreeCalypso > hg > gsm-codec-lib
view libtwamr/pitch_fr.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 13 Feb 2025 10:02:45 +0000 |
parents | be8edf9e6bc1 |
children |
line wrap: on
line source
/* ******************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * ******************************************************************************** * * File : pitch_fr.c * Purpose : Find the pitch period with 1/3 or 1/6 subsample * : resolution (closed loop). * ******************************************************************************** */ /* ******************************************************************************** * MODULE INCLUDE FILE AND VERSION ID ******************************************************************************** */ #include "namespace.h" #include "pitch_fr.h" /* ******************************************************************************** * INCLUDE FILES ******************************************************************************** */ #include "typedef.h" #include "basic_op.h" #include "oper_32b.h" #include "no_count.h" #include "cnst.h" #include "enc_lag3.h" #include "enc_lag6.h" #include "inter_36.h" #include "inv_sqrt.h" #include "convolve.h" /* ******************************************************************************** * LOCAL VARIABLES AND TABLES ******************************************************************************** */ /* * mode dependent parameters used in Pitch_fr() * Note: order of MRxx in 'enum Mode' is important! */ static const struct { Word16 max_frac_lag; /* lag up to which fractional lags are used */ Word16 flag3; /* enable 1/3 instead of 1/6 fract. resolution */ Word16 first_frac; /* first fractional to check */ Word16 last_frac; /* last fractional to check */ Word16 delta_int_low; /* integer lag below TO to start search from */ Word16 delta_int_range; /* integer range around T0 */ Word16 delta_frc_low; /* fractional below T0 */ Word16 delta_frc_range; /* fractional range around T0 */ Word16 pit_min; /* minimum pitch */ } mode_dep_parm[8] = { /* MR475 */ { 84, 1, -2, 2, 5, 10, 5, 9, PIT_MIN }, /* MR515 */ { 84, 1, -2, 2, 5, 10, 5, 9, PIT_MIN }, /* MR59 */ { 84, 1, -2, 2, 3, 6, 5, 9, PIT_MIN }, /* MR67 */ { 84, 1, -2, 2, 3, 6, 5, 9, PIT_MIN }, /* MR74 */ { 84, 1, -2, 2, 3, 6, 5, 9, PIT_MIN }, /* MR795 */ { 84, 1, -2, 2, 3, 6, 10, 19, PIT_MIN }, /* MR102 */ { 84, 1, -2, 2, 3, 6, 5, 9, PIT_MIN }, /* MR122 */ { 94, 0, -3, 3, 3, 6, 5, 9, PIT_MIN_MR122 } }; /* ******************************************************************************** * LOCAL PROGRAM CODE ******************************************************************************** */ /************************************************************************* * * FUNCTION: Norm_Corr() * * PURPOSE: Find the normalized correlation between the target vector * and the filtered past excitation. * * DESCRIPTION: * The normalized correlation is given by the correlation between the * target and filtered past excitation divided by the square root of * the energy of filtered excitation. * corr[k] = <x[], y_k[]>/sqrt(y_k[],y_k[]) * where x[] is the target vector and y_k[] is the filtered past * excitation at delay k. * *************************************************************************/ static void Norm_Corr (Word16 exc[], Word16 xn[], Word16 h[], Word16 L_subfr, Word16 t_min, Word16 t_max, Word16 corr_norm[]) { Word16 i, j, k; Word16 corr_h, corr_l, norm_h, norm_l; Word32 s; /* Usally dynamic allocation of (L_subfr) */ Word16 excf[L_SUBFR]; Word16 scaling, h_fac, *s_excf, scaled_excf[L_SUBFR]; k = -t_min; move16 (); /* compute the filtered excitation for the first delay t_min */ Convolve (&exc[k], h, excf, L_subfr); /* scale "excf[]" to avoid overflow */ for (j = 0; j < L_subfr; j++) { scaled_excf[j] = shr (excf[j], 2); move16 (); } /* Compute 1/sqrt(energy of excf[]) */ s = 0; move32 (); for (j = 0; j < L_subfr; j++) { s = L_mac (s, excf[j], excf[j]); } test (); if (L_sub (s, 67108864L) <= 0) { /* if (s <= 2^26) */ s_excf = excf; move16 (); h_fac = 15 - 12; move16 (); scaling = 0; move16 (); } else { /* "excf[]" is divided by 2 */ s_excf = scaled_excf; move16 (); h_fac = 15 - 12 - 2; move16 (); scaling = 2; move16 (); } /* loop for every possible period */ for (i = t_min; i <= t_max; i++) { /* Compute 1/sqrt(energy of excf[]) */ s = 0; move32 (); for (j = 0; j < L_subfr; j++) { s = L_mac (s, s_excf[j], s_excf[j]); } s = Inv_sqrt (s); L_Extract (s, &norm_h, &norm_l); /* Compute correlation between xn[] and excf[] */ s = 0; move32 (); for (j = 0; j < L_subfr; j++) { s = L_mac (s, xn[j], s_excf[j]); } L_Extract (s, &corr_h, &corr_l); /* Normalize correlation = correlation * (1/sqrt(energy)) */ s = Mpy_32 (corr_h, corr_l, norm_h, norm_l); corr_norm[i] = extract_h (L_shl (s, 16)); move16 (); /* modify the filtered excitation excf[] for the next iteration */ test (); if (sub (i, t_max) != 0) { k--; for (j = L_subfr - 1; j > 0; j--) { s = L_mult (exc[k], h[j]); s = L_shl (s, h_fac); s_excf[j] = add (extract_h (s), s_excf[j - 1]); move16 (); } s_excf[0] = shr (exc[k], scaling); move16 (); } } return; } /************************************************************************* * * FUNCTION: searchFrac() * * PURPOSE: Find fractional pitch * * DESCRIPTION: * The function interpolates the normalized correlation at the * fractional positions around lag T0. The position at which the * interpolation function reaches its maximum is the fractional pitch. * Starting point of the search is frac, end point is last_frac. * frac is overwritten with the fractional pitch. * *************************************************************************/ static void searchFrac ( Word16 *lag, /* i/o : integer pitch */ Word16 *frac, /* i/o : start point of search - fractional pitch */ Word16 last_frac, /* i : endpoint of search */ Word16 corr[], /* i : normalized correlation */ Word16 flag3 /* i : subsample resolution (3: =1 / 6: =0) */ ) { Word16 i; Word16 max; Word16 corr_int; /* Test the fractions around T0 and choose the one which maximizes */ /* the interpolated normalized correlation. */ max = Interpol_3or6 (&corr[*lag], *frac, flag3); move16 (); /* function result */ for (i = add (*frac, 1); i <= last_frac; i++) { corr_int = Interpol_3or6 (&corr[*lag], i, flag3); move16 (); test (); if (sub (corr_int, max) > 0) { max = corr_int; move16 (); *frac = i; move16 (); } } test(); if (flag3 == 0) { /* Limit the fraction value in the interval [-2,-1,0,1,2,3] */ test (); if (sub (*frac, -3) == 0) { *frac = 3; move16 (); *lag = sub (*lag, 1); } } else { /* limit the fraction value between -1 and 1 */ test (); if (sub (*frac, -2) == 0) { *frac = 1; move16 (); *lag = sub (*lag, 1); } test (); if (sub (*frac, 2) == 0) { *frac = -1; move16 (); *lag = add (*lag, 1); } } } /************************************************************************* * * FUNCTION: getRange() * * PURPOSE: Sets range around open-loop pitch or integer pitch of last subframe * * DESCRIPTION: * Takes integer pitch T0 and calculates a range around it with * t0_min = T0-delta_low and t0_max = (T0-delta_low) + delta_range * t0_min and t0_max are bounded by pitmin and pitmax * *************************************************************************/ static void getRange ( Word16 T0, /* i : integer pitch */ Word16 delta_low, /* i : search start offset */ Word16 delta_range, /* i : search range */ Word16 pitmin, /* i : minimum pitch */ Word16 pitmax, /* i : maximum pitch */ Word16 *t0_min, /* o : search range minimum */ Word16 *t0_max) /* o : search range maximum */ { *t0_min = sub(T0, delta_low); test (); if (sub(*t0_min, pitmin) < 0) { *t0_min = pitmin; move16(); } *t0_max = add(*t0_min, delta_range); test (); if (sub(*t0_max, pitmax) > 0) { *t0_max = pitmax; move16(); *t0_min = sub(*t0_max, delta_range); } } /* ******************************************************************************** * PUBLIC PROGRAM CODE ******************************************************************************** */ /************************************************************************* * * Function: Pitch_fr_reset * Purpose: Initializes state memory to zero * ************************************************************************** */ void Pitch_fr_reset (Pitch_frState *state) { state->T0_prev_subframe = 0; } /************************************************************************* * * FUNCTION: Pitch_fr() * * PURPOSE: Find the pitch period with 1/3 or 1/6 subsample resolution * (closed loop). * * DESCRIPTION: * - find the normalized correlation between the target and filtered * past excitation in the search range. * - select the delay with maximum normalized correlation. * - interpolate the normalized correlation at fractions -3/6 to 3/6 * with step 1/6 around the chosen delay. * - The fraction which gives the maximum interpolated value is chosen. * *************************************************************************/ Word16 Pitch_fr ( /* o : pitch period (integer) */ Pitch_frState *st, /* i/o : State struct */ enum Mode mode, /* i : codec mode */ Word16 T_op[], /* i : open loop pitch lags */ Word16 exc[], /* i : excitation buffer Q0 */ Word16 xn[], /* i : target vector Q0 */ Word16 h[], /* i : impulse response of synthesis and weighting filters Q12 */ Word16 L_subfr, /* i : Length of subframe */ Word16 i_subfr, /* i : subframe offset */ Word16 *pit_frac, /* o : pitch period (fractional) */ Word16 *resu3, /* o : subsample resolution 1/3 (=1) or 1/6 (=0) */ Word16 *ana_index /* o : index of encoding */ ) { Word16 i; Word16 t_min, t_max; Word16 t0_min, t0_max; Word16 max, lag, frac; Word16 tmp_lag; Word16 *corr; Word16 corr_v[40]; /* Total length = t0_max-t0_min+1+2*L_INTER_SRCH */ Word16 max_frac_lag; Word16 flag3, flag4; Word16 last_frac; Word16 delta_int_low, delta_int_range; Word16 delta_frc_low, delta_frc_range; Word16 pit_min; Word16 frame_offset; Word16 delta_search; /*-----------------------------------------------------------------------* * set mode specific variables * *-----------------------------------------------------------------------*/ max_frac_lag = mode_dep_parm[mode].max_frac_lag; move16 (); flag3 = mode_dep_parm[mode].flag3; move16 (); frac = mode_dep_parm[mode].first_frac; move16 (); last_frac = mode_dep_parm[mode].last_frac; move16 (); delta_int_low = mode_dep_parm[mode].delta_int_low; move16 (); delta_int_range = mode_dep_parm[mode].delta_int_range; move16 (); delta_frc_low = mode_dep_parm[mode].delta_frc_low; move16 (); delta_frc_range = mode_dep_parm[mode].delta_frc_range; move16 (); pit_min = mode_dep_parm[mode].pit_min; move16 (); /*-----------------------------------------------------------------------* * decide upon full or differential search * *-----------------------------------------------------------------------*/ delta_search = 1; move16 (); test (); test (); if ((i_subfr == 0) || (sub(i_subfr,L_FRAME_BY2) == 0)) { /* Subframe 1 and 3 */ test (); test (); test (); if (((sub(mode, MR475) != 0) && (sub(mode, MR515) != 0)) || (sub(i_subfr,L_FRAME_BY2) != 0)) { /* set t0_min, t0_max for full search */ /* this is *not* done for mode MR475, MR515 in subframe 3 */ delta_search = 0; /* no differential search */ move16 (); /* calculate index into T_op which contains the open-loop */ /* pitch estimations for the 2 big subframes */ frame_offset = 1; move16 (); test (); if (i_subfr == 0) frame_offset = 0; move16 (); /* get T_op from the corresponding half frame and */ /* set t0_min, t0_max */ getRange (T_op[frame_offset], delta_int_low, delta_int_range, pit_min, PIT_MAX, &t0_min, &t0_max); } else { /* mode MR475, MR515 and 3. Subframe: delta search as well */ getRange (st->T0_prev_subframe, delta_frc_low, delta_frc_range, pit_min, PIT_MAX, &t0_min, &t0_max); } } else { /* for Subframe 2 and 4 */ /* get range around T0 of previous subframe for delta search */ getRange (st->T0_prev_subframe, delta_frc_low, delta_frc_range, pit_min, PIT_MAX, &t0_min, &t0_max); } /*-----------------------------------------------------------------------* * Find interval to compute normalized correlation * *-----------------------------------------------------------------------*/ t_min = sub (t0_min, L_INTER_SRCH); t_max = add (t0_max, L_INTER_SRCH); corr = &corr_v[-t_min]; move16 (); /*-----------------------------------------------------------------------* * Compute normalized correlation between target and filtered excitation * *-----------------------------------------------------------------------*/ Norm_Corr (exc, xn, h, L_subfr, t_min, t_max, corr); /*-----------------------------------------------------------------------* * Find integer pitch * *-----------------------------------------------------------------------*/ max = corr[t0_min]; move16 (); lag = t0_min; move16 (); for (i = t0_min + 1; i <= t0_max; i++) { test (); if (sub (corr[i], max) >= 0) { max = corr[i]; move16 (); lag = i; move16 (); } } /*-----------------------------------------------------------------------* * Find fractional pitch * *-----------------------------------------------------------------------*/ test (); test (); if ((delta_search == 0) && (sub (lag, max_frac_lag) > 0)) { /* full search and integer pitch greater than max_frac_lag */ /* fractional search is not needed, set fractional to zero */ frac = 0; move16 (); } else { /* if differential search AND mode MR475 OR MR515 OR MR59 OR MR67 */ /* then search fractional with 4 bits resolution */ test (); test (); test (); test (); test (); if ((delta_search != 0) && ((sub (mode, MR475) == 0) || (sub (mode, MR515) == 0) || (sub (mode, MR59) == 0) || (sub (mode, MR67) == 0))) { /* modify frac or last_frac according to position of last */ /* integer pitch: either search around integer pitch, */ /* or only on left or right side */ tmp_lag = st->T0_prev_subframe; move16 (); test (); if ( sub( sub(tmp_lag, t0_min), 5) > 0) tmp_lag = add (t0_min, 5); test (); if ( sub( sub(t0_max, tmp_lag), 4) > 0) tmp_lag = sub (t0_max, 4); test (); test (); if ((sub (lag, tmp_lag) == 0) || (sub (lag, sub(tmp_lag, 1)) == 0)) { /* normal search in fractions around T0 */ searchFrac (&lag, &frac, last_frac, corr, flag3); } else if (sub (lag, sub (tmp_lag, 2)) == 0) { test (); /* limit search around T0 to the right side */ frac = 0; move16 (); searchFrac (&lag, &frac, last_frac, corr, flag3); } else if (sub (lag, add(tmp_lag, 1)) == 0) { test (); test (); /* limit search around T0 to the left side */ last_frac = 0; move16 (); searchFrac (&lag, &frac, last_frac, corr, flag3); } else { test (); test (); /* no fractional search */ frac = 0; move16 (); } } else /* test the fractions around T0 */ searchFrac (&lag, &frac, last_frac, corr, flag3); } /*-----------------------------------------------------------------------* * encode pitch * *-----------------------------------------------------------------------*/ test (); if (flag3 != 0) { /* flag4 indicates encoding with 4 bit resolution; */ /* this is needed for mode MR475, MR515 and MR59 */ flag4 = 0; move16 (); test (); test (); test (); test (); if ( (sub (mode, MR475) == 0) || (sub (mode, MR515) == 0) || (sub (mode, MR59) == 0) || (sub (mode, MR67) == 0) ) { flag4 = 1; move16 (); } /* encode with 1/3 subsample resolution */ *ana_index = Enc_lag3(lag, frac, st->T0_prev_subframe, t0_min, t0_max, delta_search, flag4); move16 (); /* function result */ } else { /* encode with 1/6 subsample resolution */ *ana_index = Enc_lag6(lag, frac, t0_min, delta_search); move16 (); /* function result */ } /*-----------------------------------------------------------------------* * update state variables * *-----------------------------------------------------------------------*/ st->T0_prev_subframe = lag; move16 (); /*-----------------------------------------------------------------------* * update output variables * *-----------------------------------------------------------------------*/ *resu3 = flag3; move16 (); *pit_frac = frac; move16 (); return (lag); }