FreeCalypso > hg > gsm-codec-lib
view libtwamr/q_plsf_3.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 13 Feb 2025 10:02:45 +0000 |
parents | 9cca139a20a8 |
children |
line wrap: on
line source
/* ***************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * **************************************************************************** * * File : q_plsf_3.c * Purpose : Quantization of LSF parameters with 1st order MA * prediction and split by 3 vector quantization * (split-VQ) * ***************************************************************************** */ /* ***************************************************************************** * MODULE INCLUDE FILE AND VERSION ID ***************************************************************************** */ #include "namespace.h" #include "q_plsf.h" /* ***************************************************************************** * INCLUDE FILES ***************************************************************************** */ #include "typedef.h" #include "basic_op.h" #include "no_count.h" #include "lsp_lsf.h" #include "reorder.h" #include "lsfwt.h" #include "memops.h" #include "q_plsf3_tab.h" /* ***************************************************************************** * LOCAL VARIABLES AND TABLES ***************************************************************************** */ #define PAST_RQ_INIT_SIZE 8 /* ***************************************************************************** * LOCAL PROGRAM CODE ***************************************************************************** */ /* Quantization of a 4 dimensional subvector */ static Word16 Vq_subvec4( /* o: quantization index, Q0 */ Word16 * lsf_r1, /* i/o: 1st LSF residual vector, Q15 */ const Word16 * dico, /* i: quantization codebook, Q15 */ const Word16 * wf1, /* i: 1st LSF weighting factors, Q13 */ Word16 dico_size) /* i: size of quantization codebook, Q0 */ { Word16 i, index = 0, temp; const Word16 *p_dico; Word32 dist_min, dist; dist_min = MAX_32; move32 (); p_dico = dico; move16 (); for (i = 0; i < dico_size; i++) { temp = sub (lsf_r1[0], *p_dico++); temp = mult (wf1[0], temp); dist = L_mult (temp, temp); temp = sub (lsf_r1[1], *p_dico++); temp = mult (wf1[1], temp); dist = L_mac (dist, temp, temp); temp = sub (lsf_r1[2], *p_dico++); temp = mult (wf1[2], temp); dist = L_mac (dist, temp, temp); temp = sub (lsf_r1[3], *p_dico++); temp = mult (wf1[3], temp); dist = L_mac (dist, temp, temp); test (); if (L_sub (dist, dist_min) < (Word32) 0) { dist_min = dist; move32 (); index = i; move16 (); } } /* Reading the selected vector */ p_dico = &dico[shl (index, 2)]; move16 (); lsf_r1[0] = *p_dico++; move16 (); lsf_r1[1] = *p_dico++; move16 (); lsf_r1[2] = *p_dico++; move16 (); lsf_r1[3] = *p_dico++; move16 (); return index; } /* Quantization of a 3 dimensional subvector */ static Word16 Vq_subvec3( /* o: quantization index, Q0 */ Word16 * lsf_r1, /* i/o: 1st LSF residual vector, Q15 */ const Word16 * dico, /* i: quantization codebook, Q15 */ const Word16 * wf1, /* i: 1st LSF weighting factors, Q13 */ Word16 dico_size, /* i: size of quantization codebook, Q0 */ Flag use_half) /* i: use every second entry in codebook */ { Word16 i, index = 0, temp; const Word16 *p_dico; Word32 dist_min, dist; dist_min = MAX_32; move32 (); p_dico = dico; move16 (); test (); if (use_half == 0) { for (i = 0; i < dico_size; i++) { temp = sub(lsf_r1[0], *p_dico++); temp = mult(wf1[0], temp); dist = L_mult(temp, temp); temp = sub(lsf_r1[1], *p_dico++); temp = mult(wf1[1], temp); dist = L_mac(dist, temp, temp); temp = sub(lsf_r1[2], *p_dico++); temp = mult(wf1[2], temp); dist = L_mac(dist, temp, temp); test (); if (L_sub(dist, dist_min) < (Word32) 0) { dist_min = dist; move32 (); index = i; move16 (); } } p_dico = &dico[add(index, add(index, index))]; move16 (); } else { for (i = 0; i < dico_size; i++) { temp = sub(lsf_r1[0], *p_dico++); temp = mult(wf1[0], temp); dist = L_mult(temp, temp); temp = sub(lsf_r1[1], *p_dico++); temp = mult(wf1[1], temp); dist = L_mac(dist, temp, temp); temp = sub(lsf_r1[2], *p_dico++); temp = mult(wf1[2], temp); dist = L_mac(dist, temp, temp); test (); if (L_sub(dist, dist_min) < (Word32) 0) { dist_min = dist; move32 (); index = i; move16 (); } p_dico = p_dico + 3; add(0,0); } p_dico = &dico[shl(add(index, add(index, index)),1)]; move16 (); } /* Reading the selected vector */ lsf_r1[0] = *p_dico++; move16 (); lsf_r1[1] = *p_dico++; move16 (); lsf_r1[2] = *p_dico++; move16 (); return index; } /* ***************************************************************************** * PUBLIC PROGRAM CODE ***************************************************************************** */ /*********************************************************************** * * routine: Q_plsf_3() * * Quantization of LSF parameters with 1st order MA prediction and * split by 3 vector quantization (split-VQ) * ***********************************************************************/ void Q_plsf_3( Q_plsfState *st, /* i/o: state struct */ enum Mode mode, /* i : coder mode */ Word16 *lsp1, /* i : 1st LSP vector Q15 */ Word16 *lsp1_q, /* o : quantized 1st LSP vector Q15 */ Word16 *indice, /* o : quantization indices of 3 vectors Q0 */ Word16 *pred_init_i /* o : init index for MA prediction in DTX mode */ ) { Word16 i, j; Word16 lsf1[M], wf1[M], lsf_p[M], lsf_r1[M]; Word16 lsf1_q[M]; Word32 L_pred_init_err; Word32 L_min_pred_init_err; Word16 temp_r1[M]; Word16 temp_p[M]; /* convert LSFs to normalize frequency domain 0..16384 */ Lsp_lsf(lsp1, lsf1, M); /* compute LSF weighting factors (Q13) */ Lsf_wt(lsf1, wf1); /* Compute predicted LSF and prediction error */ if (test(), sub(mode, MRDTX) != 0) { for (i = 0; i < M; i++) { lsf_p[i] = add(mean_lsf3[i], mult(st->past_rq[i], pred_fac[i])); move16 (); lsf_r1[i] = sub(lsf1[i], lsf_p[i]); move16 (); } } else { /* DTX mode, search the init vector that yields */ /* lowest prediction resuidual energy */ *pred_init_i = 0; move16 (); L_min_pred_init_err = 0x7fffffff; /* 2^31 - 1 */ move32 (); for (j = 0; j < PAST_RQ_INIT_SIZE; j++) { L_pred_init_err = 0; move32 (); for (i = 0; i < M; i++) { temp_p[i] = add(mean_lsf3[i], past_rq_init[j*M+i]); temp_r1[i] = sub(lsf1[i],temp_p[i]); L_pred_init_err = L_mac(L_pred_init_err, temp_r1[i], temp_r1[i]); } /* next i */ test (); if (L_sub(L_pred_init_err, L_min_pred_init_err) < (Word32) 0) { L_min_pred_init_err = L_pred_init_err; move32 (); Copy(temp_r1, lsf_r1, M); Copy(temp_p, lsf_p, M); /* Set zerom */ Copy(&past_rq_init[j*M], st->past_rq, M); *pred_init_i = j; move16 (); } /* endif */ } /* next j */ } /* endif MRDTX */ /*---- Split-VQ of prediction error ----*/ if (sub (mode, MR475) == 0 || sub (mode, MR515) == 0) { /* MR475, MR515 */ test (); test (); indice[0] = Vq_subvec3(&lsf_r1[0], dico1_lsf3, &wf1[0], DICO31_SIZE, 0); move16 (); indice[1] = Vq_subvec3(&lsf_r1[3], dico2_lsf3, &wf1[3], DICO32_SIZE/2, 1); move16 (); indice[2] = Vq_subvec4(&lsf_r1[6], mr515_3_lsf, &wf1[6], MR515_3_SIZE); move16 (); } else if (sub (mode, MR795) == 0) { /* MR795 */ test (); test (); test (); indice[0] = Vq_subvec3(&lsf_r1[0], mr795_1_lsf, &wf1[0], MR795_1_SIZE, 0); move16 (); indice[1] = Vq_subvec3(&lsf_r1[3], dico2_lsf3, &wf1[3], DICO32_SIZE, 0); move16 (); indice[2] = Vq_subvec4(&lsf_r1[6], dico3_lsf3, &wf1[6], DICO33_SIZE); move16 (); } else { /* MR59, MR67, MR74, MR102 , MRDTX */ test (); test (); test (); indice[0] = Vq_subvec3(&lsf_r1[0], dico1_lsf3, &wf1[0], DICO31_SIZE, 0); move16 (); indice[1] = Vq_subvec3(&lsf_r1[3], dico2_lsf3, &wf1[3], DICO32_SIZE, 0); move16 (); indice[2] = Vq_subvec4(&lsf_r1[6], dico3_lsf3, &wf1[6], DICO33_SIZE); move16 (); } /* Compute quantized LSFs and update the past quantized residual */ for (i = 0; i < M; i++) { lsf1_q[i] = add(lsf_r1[i], lsf_p[i]); move16 (); st->past_rq[i] = lsf_r1[i]; move16 (); } /* verification that LSFs has mimimum distance of LSF_GAP Hz */ Reorder_lsf(lsf1_q, LSF_GAP, M); /* convert LSFs to the cosine domain */ Lsf_lsp(lsf1_q, lsp1_q, M); }