view libtwamr/qua_gain.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents b02e043dcba0
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : qua_gain.c
*      Purpose          : Quantization of pitch and codebook gains.
*
********************************************************************************
*/

/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "qua_gain.h"

/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "tw_amr.h"
#include "typedef.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "no_count.h"
#include "cnst.h"
#include "pow2.h"
#include "gc_pred.h"
#include "qua_gain_tab.h"

/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/

/*************************************************************************
 *
 * FUNCTION:  Qua_gain()
 *
 * PURPOSE: Quantization of pitch and codebook gains.
 *          (using predicted codebook gain)
 *
 *************************************************************************/
Word16
Qua_gain(                   /* o  : index of quantization.                 */   
    enum Mode mode,         /* i  : AMR mode                               */
    Word16 exp_gcode0,      /* i  : predicted CB gain (exponent),      Q0  */
    Word16 frac_gcode0,     /* i  : predicted CB gain (fraction),      Q15 */
    Word16 frac_coeff[],    /* i  : energy coeff. (5), fraction part,  Q15 */
    Word16 exp_coeff[],     /* i  : energy coeff. (5), exponent part,  Q0  */
                            /*      (frac_coeff and exp_coeff computed in  */
                            /*       calc_filt_energies())                 */
    Word16 gp_limit,        /* i  : pitch gain limit                       */
    Word16 *gain_pit,       /* o  : Pitch gain,                        Q14 */
    Word16 *gain_cod,       /* o  : Code gain,                         Q1  */
    Word16 *qua_ener_MR122, /* o  : quantized energy error,            Q10 */
                            /*      (for MR122 MA predictor update)        */
    Word16 *qua_ener        /* o  : quantized energy error,            Q10 */
                            /*      (for other MA predictor update)        */
)
{
    const Word16 *p;
    Word16 i, j, index = 0;
    Word16 gcode0, e_max, exp_code;
    Word16 g_pitch, g2_pitch, g_code, g2_code, g_pit_cod;
    Word16 coeff[5], coeff_lo[5];
    Word16 exp_max[5];
    Word32 L_tmp, dist_min;
    const Word16 *table_gain;
    Word16 table_len;
    
    test();  test(); test();
    if ( sub (mode, MR102) == 0 || sub (mode, MR74) == 0 || sub (mode, MR67) == 0)
    {
       table_len = VQ_SIZE_HIGHRATES;            move16 ();
       table_gain = table_gain_highrates;        move16 ();
    }
    else
    {
       table_len = VQ_SIZE_LOWRATES;             move16 ();
       table_gain = table_gain_lowrates;         move16 ();
    }
    
    /*-------------------------------------------------------------------*
     *  predicted codebook gain                                          *
     *  ~~~~~~~~~~~~~~~~~~~~~~~                                          *
     *  gc0     = 2^exp_gcode0 + 2^frac_gcode0                           *
     *                                                                   *
     *  gcode0 (Q14) = 2^14*2^frac_gcode0 = gc0 * 2^(14-exp_gcode0)      *
     *-------------------------------------------------------------------*/

    gcode0 = extract_l(Pow2(14, frac_gcode0));

    /*-------------------------------------------------------------------*
     *  Scaling considerations:                                          *
     *  ~~~~~~~~~~~~~~~~~~~~~~~                                          *
     *-------------------------------------------------------------------*/

    /*
     * The error energy (sum) to be minimized consists of five terms, t[0..4].
     *
     *                      t[0] =    gp^2  * <y1 y1>
     *                      t[1] = -2*gp    * <xn y1>
     *                      t[2] =    gc^2  * <y2 y2>
     *                      t[3] = -2*gc    * <xn y2>
     *                      t[4] =  2*gp*gc * <y1 y2>
     *
     */

    /* determine the scaling exponent for g_code: ec = ec0 - 11 */
    exp_code = sub(exp_gcode0, 11);

    /* calculate exp_max[i] = s[i]-1 */
    exp_max[0] = sub(exp_coeff[0], 13);                        move16 ();
    exp_max[1] = sub(exp_coeff[1], 14);                        move16 ();
    exp_max[2] = add(exp_coeff[2], add(15, shl(exp_code, 1))); move16 ();
    exp_max[3] = add(exp_coeff[3], exp_code);                  move16 ();
    exp_max[4] = add(exp_coeff[4], add(1, exp_code));          move16 ();


    /*-------------------------------------------------------------------*
     *  Find maximum exponent:                                           *
     *  ~~~~~~~~~~~~~~~~~~~~~~                                           *
     *                                                                   *
     *  For the sum operation, all terms must have the same scaling;     *
     *  that scaling should be low enough to prevent overflow. There-    *
     *  fore, the maximum scale is determined and all coefficients are   *
     *  re-scaled:                                                       *
     *                                                                   *
     *    e_max = max(exp_max[i]) + 1;                                   *
     *    e = exp_max[i]-e_max;         e <= 0!                          *
     *    c[i] = c[i]*2^e                                                *
     *-------------------------------------------------------------------*/

    e_max = exp_max[0];                                        move16 ();
    for (i = 1; i < 5; i++)
    {
        move16(); test();
        if (sub(exp_max[i], e_max) > 0)
        {
            e_max = exp_max[i];                                move16 ();
        }
    }

    e_max = add(e_max, 1);      /* To avoid overflow */

    for (i = 0; i < 5; i++) {
        j = sub(e_max, exp_max[i]);
        L_tmp = L_deposit_h(frac_coeff[i]);
        L_tmp = L_shr(L_tmp, j);
        L_Extract(L_tmp, &coeff[i], &coeff_lo[i]);
    }


    /*-------------------------------------------------------------------*
     *  Codebook search:                                                 *
     *  ~~~~~~~~~~~~~~~~                                                 *
     *                                                                   *
     *  For each pair (g_pitch, g_fac) in the table calculate the        *
     *  terms t[0..4] and sum them up; the result is the mean squared    *
     *  error for the quantized gains from the table. The index for the  *
     *  minimum MSE is stored and finally used to retrieve the quantized *
     *  gains                                                            *
     *-------------------------------------------------------------------*/

    /* start with "infinite" MSE */
    dist_min = MAX_32;        move32();

    p = &table_gain[0];       move16 ();

    for (i = 0; i < table_len; i++)
    {
        g_pitch = *p++;       move16 ();
        g_code = *p++;        move16 (); /* this is g_fac        */
        p++;                             /* skip log2(g_fac)     */
        p++;                             /* skip 20*log10(g_fac) */
            
        test ();
        if (sub(g_pitch, gp_limit) <= 0)
        {
            g_code = mult(g_code, gcode0);
            g2_pitch = mult(g_pitch, g_pitch);
            g2_code = mult(g_code, g_code);
            g_pit_cod = mult(g_code, g_pitch);

            L_tmp = Mpy_32_16(coeff[0], coeff_lo[0], g2_pitch);
            L_tmp = L_add(L_tmp, Mpy_32_16(coeff[1], coeff_lo[1], g_pitch));
            L_tmp = L_add(L_tmp, Mpy_32_16(coeff[2], coeff_lo[2], g2_code));
            L_tmp = L_add(L_tmp, Mpy_32_16(coeff[3], coeff_lo[3], g_code));
            L_tmp = L_add(L_tmp, Mpy_32_16(coeff[4], coeff_lo[4], g_pit_cod));

            /* store table index if MSE for this index is lower
               than the minimum MSE seen so far */
            test ();
            if (L_sub(L_tmp, dist_min) < (Word32) 0)
            {
                dist_min = L_tmp; move32 ();
                index = i;        move16 ();
            }
        }
    }

    /*------------------------------------------------------------------*
     *  read quantized gains and new values for MA predictor memories   *
     *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   *
     *------------------------------------------------------------------*/

    /* Read the quantized gains */
    p = &table_gain[shl (index, 2)]; move16 ();
    *gain_pit = *p++;         move16();
    g_code = *p++;            move16();
    *qua_ener_MR122 = *p++;   move16();
    *qua_ener = *p;           move16();

    /*------------------------------------------------------------------*
     *  calculate final fixed codebook gain:                            *
     *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            *
     *                                                                  *
     *   gc = gc0 * g                                                   *
     *------------------------------------------------------------------*/

    L_tmp = L_mult(g_code, gcode0);
    L_tmp = L_shr(L_tmp, sub(10, exp_gcode0));
    *gain_cod = extract_h(L_tmp);

    return index;
}