FreeCalypso > hg > gsm-codec-lib
view libtwamr/r_fft.c @ 581:e2d5cad04cbf
libgsmhr1 RxFE: store CN R0+LPC separately from speech
In the original GSM 06.06 code the ECU for speech mode is entirely
separate from the CN generator, maintaining separate state. (The
main intertie between them is the speech vs CN state variable,
distinguishing between speech and CN BFIs, in addition to the
CN-specific function of distinguishing between initial and update
SIDs.)
In the present RxFE implementation I initially thought that we could
use the same saved_frame buffer for both ECU and CN, overwriting
just the first 4 params (R0 and LPC) when a valid SID comes in.
However, I now realize it was a bad idea: the original code has a
corner case (long sequence of speech-mode BFIs to put the ECU in
state 6, then SID and CN-mode BFIs, then a good speech frame) that
would be broken by that buffer reuse approach. We could eliminate
this corner case by resetting the ECU state when passing through
a CN insertion period, but doing so would needlessly increase
the behavioral diffs between GSM 06.06 and our version.
Solution: use a separate CN-specific buffer for CN R0+LPC parameters,
and match the behavior of GSM 06.06 code in this regard.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 13 Feb 2025 10:02:45 +0000 |
parents | 810ac4b99025 |
children |
line wrap: on
line source
/* ***************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * ***************************************************************************** * * File : r_fft.c * Purpose : Fast Fourier Transform (FFT) algorithm * ***************************************************************************** */ /***************************************************************** * * This is an implementation of decimation-in-time FFT algorithm for * real sequences. The techniques used here can be found in several * books, e.g., i) Proakis and Manolakis, "Digital Signal Processing", * 2nd Edition, Chapter 9, and ii) W.H. Press et. al., "Numerical * Recipes in C", 2nd Ediiton, Chapter 12. * * Input - There is one input to this function: * * 1) An integer pointer to the input data array * * Output - There is no return value. * The input data are replaced with transformed data. If the * input is a real time domain sequence, it is replaced with * the complex FFT for positive frequencies. The FFT value * for DC and the foldover frequency are combined to form the * first complex number in the array. The remaining complex * numbers correspond to increasing frequencies. If the input * is a complex frequency domain sequence arranged as above, * it is replaced with the corresponding time domain sequence. * * Notes: * * 1) This function is designed to be a part of a VAD * algorithm that requires 128-point FFT of real * sequences. This is achieved here through a 64-point * complex FFT. Consequently, the FFT size information is * not transmitted explicitly. However, some flexibility * is provided in the function to change the size of the * FFT by specifying the size information through "define" * statements. * * 2) The values of the complex sinusoids used in the FFT * algorithm are stored in a ROM table. * * 3) In the c_fft function, the FFT values are divided by * 2 after each stage of computation thus dividing the * final FFT values by 64. This is somewhat different * from the usual definition of FFT where the factor 1/N, * i.e., 1/64, used for the IFFT and not the FFT. No factor * is used in the r_fft function. * *****************************************************************/ #include "tw_amr.h" #include "namespace.h" #include "typedef.h" #include "cnst.h" #include "basic_op.h" #include "oper_32b.h" #include "no_count.h" #include "vad2.h" #define SIZE 128 #define SIZE_BY_TWO 64 #define NUM_STAGE 6 #define TRUE 1 #define FALSE 0 static const Word16 phs_tbl[] = { 32767, 0, 32729, -1608, 32610, -3212, 32413, -4808, 32138, -6393, 31786, -7962, 31357, -9512, 30853, -11039, 30274, -12540, 29622, -14010, 28899, -15447, 28106, -16846, 27246, -18205, 26320, -19520, 25330, -20788, 24279, -22006, 23170, -23170, 22006, -24279, 20788, -25330, 19520, -26320, 18205, -27246, 16846, -28106, 15447, -28899, 14010, -29622, 12540, -30274, 11039, -30853, 9512, -31357, 7962, -31786, 6393, -32138, 4808, -32413, 3212, -32610, 1608, -32729, 0, -32768, -1608, -32729, -3212, -32610, -4808, -32413, -6393, -32138, -7962, -31786, -9512, -31357, -11039, -30853, -12540, -30274, -14010, -29622, -15447, -28899, -16846, -28106, -18205, -27246, -19520, -26320, -20788, -25330, -22006, -24279, -23170, -23170, -24279, -22006, -25330, -20788, -26320, -19520, -27246, -18205, -28106, -16846, -28899, -15447, -29622, -14010, -30274, -12540, -30853, -11039, -31357, -9512, -31786, -7962, -32138, -6393, -32413, -4808, -32610, -3212, -32729, -1608 }; static const Word16 ii_table[] = {SIZE / 2, SIZE / 4, SIZE / 8, SIZE / 16, SIZE / 32, SIZE / 64}; /* FFT function for complex sequences */ /* * The decimation-in-time complex FFT is implemented below. * The input complex numbers are presented as real part followed by * imaginary part for each sample. The counters are therefore * incremented by two to access the complex valued samples. */ static void c_fft(Word16 * farray_ptr) { Word16 i, j, k, ii, jj, kk, ji, kj, ii2; Word32 ftmp, ftmp_real, ftmp_imag; Word16 tmp, tmp1, tmp2; /* Rearrange the input array in bit reversed order */ for (i = 0, j = 0; i < SIZE - 2; i = i + 2) { test(); if (sub(j, i) > 0) { ftmp = *(farray_ptr + i); move16(); *(farray_ptr + i) = *(farray_ptr + j); move16(); *(farray_ptr + j) = ftmp; move16(); ftmp = *(farray_ptr + i + 1); move16(); *(farray_ptr + i + 1) = *(farray_ptr + j + 1); move16(); *(farray_ptr + j + 1) = ftmp; move16(); } k = SIZE_BY_TWO; move16(); test(); while (sub(j, k) >= 0) { j = sub(j, k); k = shr(k, 1); } j = add(j, k); } /* The FFT part */ for (i = 0; i < NUM_STAGE; i++) { /* i is stage counter */ jj = shl(2, i); /* FFT size */ kk = shl(jj, 1); /* 2 * FFT size */ ii = ii_table[i]; /* 2 * number of FFT's */ move16(); ii2 = shl(ii, 1); ji = 0; /* ji is phase table index */ move16(); for (j = 0; j < jj; j = j + 2) { /* j is sample counter */ for (k = j; k < SIZE; k = k + kk) { /* k is butterfly top */ kj = add(k, jj); /* kj is butterfly bottom */ /* Butterfly computations */ ftmp_real = L_mult(*(farray_ptr + kj), phs_tbl[ji]); ftmp_real = L_msu(ftmp_real, *(farray_ptr + kj + 1), phs_tbl[ji + 1]); ftmp_imag = L_mult(*(farray_ptr + kj + 1), phs_tbl[ji]); ftmp_imag = L_mac(ftmp_imag, *(farray_ptr + kj), phs_tbl[ji + 1]); tmp1 = round(ftmp_real); tmp2 = round(ftmp_imag); tmp = sub(*(farray_ptr + k), tmp1); *(farray_ptr + kj) = shr(tmp, 1); move16(); tmp = sub(*(farray_ptr + k + 1), tmp2); *(farray_ptr + kj + 1) = shr(tmp, 1); move16(); tmp = add(*(farray_ptr + k), tmp1); *(farray_ptr + k) = shr(tmp, 1); move16(); tmp = add(*(farray_ptr + k + 1), tmp2); *(farray_ptr + k + 1) = shr(tmp, 1); move16(); } ji = add(ji, ii2); } } } /* end of c_fft () */ void r_fft(Word16 * farray_ptr) { Word16 ftmp1_real, ftmp1_imag, ftmp2_real, ftmp2_imag; Word32 Lftmp1_real, Lftmp1_imag; Word16 i, j; Word32 Ltmp1; /* Perform the complex FFT */ c_fft(farray_ptr); /* First, handle the DC and foldover frequencies */ ftmp1_real = *farray_ptr; move16(); ftmp2_real = *(farray_ptr + 1); move16(); *farray_ptr = add(ftmp1_real, ftmp2_real); move16(); *(farray_ptr + 1) = sub(ftmp1_real, ftmp2_real); move16(); /* Now, handle the remaining positive frequencies */ for (i = 2, j = SIZE - i; i <= SIZE_BY_TWO; i = i + 2, j = SIZE - i) { ftmp1_real = add(*(farray_ptr + i), *(farray_ptr + j)); ftmp1_imag = sub(*(farray_ptr + i + 1), *(farray_ptr + j + 1)); ftmp2_real = add(*(farray_ptr + i + 1), *(farray_ptr + j + 1)); ftmp2_imag = sub(*(farray_ptr + j), *(farray_ptr + i)); Lftmp1_real = L_deposit_h(ftmp1_real); Lftmp1_imag = L_deposit_h(ftmp1_imag); Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[i]); Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[i + 1]); *(farray_ptr + i) = round(L_shr(Ltmp1, 1)); move16(); Ltmp1 = L_mac(Lftmp1_imag, ftmp2_imag, phs_tbl[i]); Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[i + 1]); *(farray_ptr + i + 1) = round(L_shr(Ltmp1, 1)); move16(); Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[j]); Ltmp1 = L_mac(Ltmp1, ftmp2_imag, phs_tbl[j + 1]); *(farray_ptr + j) = round(L_shr(Ltmp1, 1)); move16(); Ltmp1 = L_negate(Lftmp1_imag); Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[j]); Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[j + 1]); *(farray_ptr + j + 1) = round(L_shr(Ltmp1, 1)); move16(); } } /* end r_fft () */