view libtwamr/vad2.c @ 581:e2d5cad04cbf

libgsmhr1 RxFE: store CN R0+LPC separately from speech In the original GSM 06.06 code the ECU for speech mode is entirely separate from the CN generator, maintaining separate state. (The main intertie between them is the speech vs CN state variable, distinguishing between speech and CN BFIs, in addition to the CN-specific function of distinguishing between initial and update SIDs.) In the present RxFE implementation I initially thought that we could use the same saved_frame buffer for both ECU and CN, overwriting just the first 4 params (R0 and LPC) when a valid SID comes in. However, I now realize it was a bad idea: the original code has a corner case (long sequence of speech-mode BFIs to put the ECU in state 6, then SID and CN-mode BFIs, then a good speech frame) that would be broken by that buffer reuse approach. We could eliminate this corner case by resetting the ECU state when passing through a CN insertion period, but doing so would needlessly increase the behavioral diffs between GSM 06.06 and our version. Solution: use a separate CN-specific buffer for CN R0+LPC parameters, and match the behavior of GSM 06.06 code in this regard.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 13 Feb 2025 10:02:45 +0000
parents 0152c069d01f
children
line wrap: on
line source

/*
*****************************************************************************
*                                                                        
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
*****************************************************************************
*
*      File             : vad2.c
*      Purpose          : Voice Activity Detection (VAD) for AMR (option 2)
*
*****************************************************************************
*/

/***************************************************************************
 *
 *   FUNCTION NAME: vad2()
 *
 *   PURPOSE:
 *     This function provides the Voice Activity Detection function option 2
 *     for the Adaptive Multi-rate (AMR) codec.
 *
 *   INPUTS:
 *
 *     farray_ptr
 *                     pointer to Word16[80] input array
 *     vadState2
 *                     pointer to vadState2 state structure
 *
 *   OUTPUTS:
 *
 *     state variables are updated
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     VAD(m) - two successive calls to vad2() yield
 *                     the VAD decision for the 20 ms frame:
 *                     VAD_flag = VAD(m-1) || VAD(m)
 *
 *
 *************************************************************************/

/* Includes */

#include <stdint.h>
#include <string.h>
#include "tw_amr.h"
#include "namespace.h"
#include "typedef.h"
#include "cnst.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "no_count.h"
#include "log2.h"
#include "pow2.h"
#include "vad2.h"


/* Local functions */

/***************************************************************************
 *
 *   FUNCTION NAME: fn10Log10
 *
 *   PURPOSE:
 *     The purpose of this function is to take the 10*log base 10 of input and
 *     divide by 128 and return; i.e. output = 10*log10(input)/128 (scaled as 7,8)
 *
 *   INPUTS:
 *
 *     L_Input
 *                     input (scaled as 31-fbits,fbits)
 *     fbits
 *                     number of fractional bits on input
 *
 *   OUTPUTS:
 *
 *     none
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     output (scaled as 7,8)
 *
 *   DESCRIPTION:
 *
 *     10*log10(x)/128 = 10*(log10(2) * (log2(x<<fbits)-log2(1<<fbits)) >> 7
 *                     = 3.0103 * (log2(x<<fbits) - fbits) >> 7
 *                     = ((3.0103/4.0 * (log2(x<<fbits) - fbits) << 2) >> 7
 *                     = (3.0103/4.0 * (log2(x<<fbits) - fbits) >> 5
 *
 *************************************************************************/

static Word16 fn10Log10 (Word32 L_Input, Word16 fbits)
{

	Word16 integer;		/* Integer part of Log2.   (range: 0<=val<=30) */
	Word16 fraction;	/* Fractional part of Log2. (range: 0<=val<1) */

	Word32 Ltmp;
	Word16 tmp;

        Log2(L_Input, &integer, &fraction);

	integer = sub(integer, fbits);
	Ltmp = Mpy_32_16 (integer, fraction, 24660);	/* 24660 = 10*log10(2)/4 scaled 0,15 */
	Ltmp = L_shr_r(Ltmp, 5+1);			/* extra shift for 30,1 => 15,0 extract correction */
        tmp = extract_l(Ltmp);

        return (tmp);
}


/***************************************************************************
 *
 *   FUNCTION NAME: block_norm
 *
 *   PURPOSE:
 *     The purpose of this function is block normalise the input data sequence
 *
 *   INPUTS:
 *
 *     &in[0]
 *                     pointer to data sequence to be normalised
 *     length
 *                     number of elements in data sequence
 *     headroom
 *                     number of headroom bits (i.e., 
 *
 *   OUTPUTS:
 *
 *     &out[0]
 *                     normalised output data sequence pointed to by &out[0]
 *
 *   RETURN VALUE:
 *
 *     Word16
 *                     number of bits sequence was left shifted
 *
 *   DESCRIPTION:
 *
 *                     1) Search for maximum absolute valued data element
 *                     2) Normalise the max element with "headroom"
 *                     3) Transfer/shift the input sequence to the output buffer
 *                     4) Return the number of left shifts
 *
 *   CAVEATS:
 *                     An input sequence of all zeros will return the maximum
 *                     number of left shifts allowed, NOT the value returned
 *                     by a norm_s(0) call, since it desired to associate an
 *                     all zeros sequence with low energy.
 *
 *************************************************************************/

static
Word16 block_norm (Word16 * in, Word16 * out, Word16 length, Word16 headroom)
{

	Word16 i, max, scnt, adata;

        max = abs_s(in[0]);
	for (i = 1; i < length; i++)
	{
                adata = abs_s(in[i]);                           test();
		if (sub(adata, max) > 0)
		{
			max = adata;				move16();
		}
	}
	test();
	if (max != 0)
	{
		scnt = sub(norm_s(max), headroom);
		for (i = 0; i < length; i++)
		{
			out[i] = shl(in[i], scnt);	       	move16();
		}
	}
	else
	{
		scnt = sub(16, headroom);
		for (i = 0; i < length; i++)
		{
			out[i] = 0;                             move16();
		}
	}
	return (scnt);
}


/********************************************* The VAD function ***************************************************/

Word16 vad2 (Word16 * farray_ptr, vadState2 * st)
{

	/*
	 * The channel table is defined below.  In this table, the
	 * lower and higher frequency coefficients for each of the 16
	 * channels are specified.  The table excludes the coefficients
	 * with numbers 0 (DC), 1, and 64 (Foldover frequency).
	 */

	static const Word16 ch_tbl[NUM_CHAN][2] =
	{

		{2, 3},
		{4, 5},
		{6, 7},
		{8, 9},
		{10, 11},
		{12, 13},
		{14, 16},
		{17, 19},
		{20, 22},
		{23, 26},
		{27, 30},
		{31, 35},
		{36, 41},
		{42, 48},
		{49, 55},
		{56, 63}

	};

	/* channel energy scaling table - allows efficient division by number
         * of DFT bins in the channel: 1/2, 1/3, 1/4, etc.
	 */

	static const Word16 ch_tbl_sh[NUM_CHAN] =
	{
		16384, 16384, 16384, 16384, 16384, 16384, 10923, 10923,
		10923, 8192, 8192, 6554, 5461, 4681, 4681, 4096
	};

	/*
	 * The voice metric table is defined below.  It is a non-
	 * linear table with a deadband near zero.  It maps the SNR
	 * index (quantized SNR value) to a number that is a measure
	 * of voice quality.
	 */

	static const Word16 vm_tbl[90] =
	{
		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
		3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7,
		8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15,
		15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24,
		24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34,
		35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45,
		46, 47, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50,
		50, 50
	};

	/* hangover as a function of peak SNR (3 dB steps) */
	static const Word16 hangover_table[20] =
	{
		30, 30, 30, 30, 30, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 8, 8, 8
	};

	/* burst sensitivity as a function of peak SNR (3 dB steps) */
	static const Word16 burstcount_table[20] =
	{
		8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4
	};

	/* voice metric sensitivity as a function of peak SNR (3 dB steps) */
	static const Word16 vm_threshold_table[20] =
	{
                34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 40, 51, 71, 100, 139, 191, 257, 337, 432
	};


	/* State tables that use 22,9 or 27,4 scaling for ch_enrg[] */

	static const Word16 noise_floor_chan[2] =	{NOISE_FLOOR_CHAN_0, NOISE_FLOOR_CHAN_1};
	static const Word16 min_chan_enrg[2] =	{MIN_CHAN_ENRG_0, MIN_CHAN_ENRG_1};
	static const Word16 ine_noise[2] = 		{INE_NOISE_0, INE_NOISE_1};
	static const Word16 fbits[2] = 		{FRACTIONAL_BITS_0, FRACTIONAL_BITS_1};
	static const Word16 state_change_shift_r[2] = {STATE_1_TO_0_SHIFT_R, STATE_0_TO_1_SHIFT_R};

	/* Energy scale table given 30,1 input scaling (also account for -6 dB shift on input) */
	static const Word16 enrg_norm_shift[2] = 	{(FRACTIONAL_BITS_0-1+2), (FRACTIONAL_BITS_1-1+2)};


	/* Automatic variables */

	Word32 Lenrg;				/* scaled as 30,1 */
	Word32 Ltne;				/* scaled as 22,9 */
	Word32 Ltce;				/* scaled as 22,9 or 27,4 */

	Word16 tne_db;				/* scaled as 7,8 */
	Word16 tce_db;				/* scaled as 7,8 */

	Word16 input_buffer[FRM_LEN];		/* used for block normalising input data */
	Word16 data_buffer[FFT_LEN];		/* used for in-place FFT */

	Word16 ch_snr[NUM_CHAN];		/* scaled as 7,8 */
	Word16 ch_snrq;				/* scaled as 15,0 (in 0.375 dB steps) */
	Word16 vm_sum;				/* scaled as 15,0 */
	Word16 ch_enrg_dev;			/* scaled as 7,8 */

	Word32 Lpeak;				/* maximum channel energy */
	Word16 p2a_flag;			/* flag to indicate spectral peak-to-average ratio > 10 dB */

	Word16 ch_enrg_db[NUM_CHAN];		/* scaled as 7,8 */
	Word16 ch_noise_db;			/* scaled as 7,8 */

	Word16 alpha;				/* scaled as 0,15 */
	Word16 one_m_alpha;			/* scaled as 0,15 */
	Word16 update_flag;			/* set to indicate a background noise estimate update */

	Word16 i, j, j1, j2;			/* Scratch variables */
	Word16 hi1, lo1;

	Word32 Ltmp, Ltmp1, Ltmp2;
	Word16 tmp;

	Word16 normb_shift;		/* block norm shift count */

	Word16 ivad;			/* intermediate VAD decision (return value) */
	Word16 tsnrq;			/* total signal-to-noise ratio (quantized 3 dB steps) scaled as 15,0 */
	Word16 xt;			/* instantaneous frame SNR in dB, scaled as 7,8 */

	Word16 state_change;


	/* Increment frame counter */
	st->Lframe_cnt = L_add(st->Lframe_cnt, 1);

	/* Block normalize the input */
	normb_shift = block_norm(farray_ptr, input_buffer, FRM_LEN, FFT_HEADROOM);

	/* Pre-emphasize the input data and store in the data buffer with the appropriate offset */
	for (i = 0; i < DELAY; i++)
	{
		data_buffer[i] = 0;									move16();
	}

	st->pre_emp_mem = shr_r(st->pre_emp_mem, sub(st->last_normb_shift, normb_shift));
	st->last_normb_shift = normb_shift;								move16();

	data_buffer[DELAY] = add(input_buffer[0], mult(PRE_EMP_FAC, st->pre_emp_mem));			move16();

	for (i = DELAY + 1, j = 1; i < DELAY + FRM_LEN; i++, j++)
	{
		data_buffer[i] = add(input_buffer[j], mult(PRE_EMP_FAC, input_buffer[j-1]));		move16();
	}
	st->pre_emp_mem = input_buffer[FRM_LEN-1];							move16();

	for (i = DELAY + FRM_LEN; i < FFT_LEN; i++)
	{
		data_buffer[i] = 0;									move16();
	}


	/* Perform FFT on the data buffer */
	r_fft(data_buffer);


	/* Use normb_shift factor to determine the scaling of the energy estimates */
	state_change = 0;										move16();
													test();
	if (st->shift_state == 0)
	{												test();
		if (sub(normb_shift, -FFT_HEADROOM+2) <= 0)
		{
			state_change = 1;								move16();
			st->shift_state = 1;								move16();
		}
	}
	else
	{												test();
		if (sub(normb_shift, -FFT_HEADROOM+5) >= 0)
		{
			state_change = 1;								move16();
			st->shift_state = 0;								move16();
		}
	}

	/* Scale channel energy estimate */								test();
	if (state_change)
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			st->Lch_enrg[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[st->shift_state]);	move32();
		}
	}


	/* Estimate the energy in each channel */
													test();
	if (L_sub(st->Lframe_cnt, 1) == 0)
	{
		alpha = 32767;										move16();
		one_m_alpha = 0;									move16();
	}
	else
	{
		alpha = CEE_SM_FAC;									move16();
		one_m_alpha = ONE_MINUS_CEE_SM_FAC;							move16();
	}

	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Lenrg = 0;										move16();
		j1 = ch_tbl[i][0];									move16();
		j2 = ch_tbl[i][1];									move16();

		for (j = j1; j <= j2; j++)
		{
			Lenrg = L_mac(Lenrg, data_buffer[2 * j], data_buffer[2 * j]);
			Lenrg = L_mac(Lenrg, data_buffer[2 * j + 1], data_buffer[2 * j + 1]);
		}

		/* Denorm energy & scale 30,1 according to the state */
		Lenrg = L_shr_r(Lenrg, sub(shl(normb_shift, 1), enrg_norm_shift[st->shift_state]));

		/* integrate over time: e[i] = (1-alpha)*e[i] + alpha*enrg/num_bins_in_chan */
		tmp = mult(alpha, ch_tbl_sh[i]);
		L_Extract (Lenrg, &hi1, &lo1);
		Ltmp = Mpy_32_16(hi1, lo1, tmp);

		L_Extract (st->Lch_enrg[i], &hi1, &lo1);
		st->Lch_enrg[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, one_m_alpha));			move32();
													test();
		if (L_sub(st->Lch_enrg[i], min_chan_enrg[st->shift_state]) < 0)
		{
			st->Lch_enrg[i] = min_chan_enrg[st->shift_state];				move32();
		}

	}


	/* Compute the total channel energy estimate (Ltce) */
	Ltce = 0;											move16();
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Ltce = L_add(Ltce, st->Lch_enrg[i]);
	}


	/* Calculate spectral peak-to-average ratio, set flag if p2a > 10 dB */
	Lpeak = 0;											move32();
	for (i = LO_CHAN+2; i <= HI_CHAN; i++)	/* Sine waves not valid for low frequencies */
	{												test();
		if (L_sub(st->Lch_enrg [i], Lpeak) > 0)
		{
			Lpeak = st->Lch_enrg [i];							move32();
		}
	}

	/* Set p2a_flag if peak (dB) > average channel energy (dB) + 10 dB */
	/*   Lpeak > Ltce/num_channels * 10^(10/10)                        */
	/*   Lpeak > (10/16)*Ltce                                          */

	L_Extract (Ltce, &hi1, &lo1);
	Ltmp = Mpy_32_16(hi1, lo1, 20480);
													test();
	if (L_sub(Lpeak, Ltmp) > 0)
	{
		p2a_flag = TRUE;									move16();
	}
	else
	{
		p2a_flag = FALSE;									move16();
	}


	/* Initialize channel noise estimate to either the channel energy or fixed level  */
	/*   Scale the energy appropriately to yield state 0 (22,9) scaling for noise */
													test();
	if (L_sub(st->Lframe_cnt, 4) <= 0)
	{												test();
		if (p2a_flag == TRUE)
		{
			for (i = LO_CHAN; i <= HI_CHAN; i++)
			{
				st->Lch_noise[i] = INE_NOISE_0;						move32();
			}
		}
		else
		{
			for (i = LO_CHAN; i <= HI_CHAN; i++)
			{										test();
				if (L_sub(st->Lch_enrg[i], ine_noise[st->shift_state]) < 0)
				{
					st->Lch_noise[i] = INE_NOISE_0;					move32();
				}
				else
				{									test();
					if (st->shift_state == 1)
					{
						st->Lch_noise[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[0]);
													move32();
					}
					else
					{
						st->Lch_noise[i] = st->Lch_enrg[i];			move32();
					}
				}
			}
		}
	}


	/* Compute the channel energy (in dB), the channel SNRs, and the sum of voice metrics */
	vm_sum = 0;											move16();
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		ch_enrg_db[i] = fn10Log10(st->Lch_enrg[i], fbits[st->shift_state]);			move16();
		ch_noise_db = fn10Log10(st->Lch_noise[i], FRACTIONAL_BITS_0);

		ch_snr[i] = sub(ch_enrg_db[i], ch_noise_db);						move16();

		/* quantize channel SNR in 3/8 dB steps (scaled 7,8 => 15,0) */
		/*   ch_snr = round((snr/(3/8))>>8)                          */
		/*          = round(((0.6667*snr)<<2)>>8)                    */
		/*          = round((0.6667*snr)>>6)                         */

		ch_snrq = shr_r(mult(21845, ch_snr[i]), 6);

		/* Accumulate the sum of voice metrics	*/						test();
		if (sub(ch_snrq, 89) < 0)
		{											test();
			if (ch_snrq > 0)
			{
				j = ch_snrq;								move16();
			}
			else
			{
				j = 0;									move16();
			}
		}
		else
		{
			j = 89;										move16();
		}
		vm_sum = add(vm_sum, vm_tbl[j]);
	}


	/* Initialize NOMINAL peak voice energy and average noise energy, calculate instantaneous SNR */ 
												test(),test(),logic16();
	if (L_sub(st->Lframe_cnt, 4) <= 0 || st->fupdate_flag == TRUE)
	{
		/* tce_db = (96 - 22 - 10*log10(64) (due to FFT)) scaled as 7,8 */
		tce_db = 14320;										move16();
		st->negSNRvar = 0;									move16();
		st->negSNRbias = 0;									move16();

		/* Compute the total noise estimate (Ltne) */
		Ltne = 0;										move32();
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			Ltne = L_add(Ltne, st->Lch_noise[i]);
		}

		/* Get total noise in dB */
		tne_db = fn10Log10(Ltne, FRACTIONAL_BITS_0);

		/* Initialise instantaneous and long-term peak signal-to-noise ratios */
		xt = sub(tce_db, tne_db);
		st->tsnr = xt;										move16();
	}
	else
	{
		/* Calculate instantaneous frame signal-to-noise ratio */
		/* xt = 10*log10( sum(2.^(ch_snr*0.1*log2(10)))/length(ch_snr) ) */
		Ltmp1 = 0;										move32();
		for (i=LO_CHAN; i<=HI_CHAN; i++) {
			/* Ltmp2 = ch_snr[i] * 0.1 * log2(10); (ch_snr scaled as 7,8) */
			Ltmp2 = L_shr(L_mult(ch_snr[i], 10885), 8);
			L_Extract(Ltmp2, &hi1, &lo1);
			hi1 = add(hi1, 3);			/* 2^3 to compensate for negative SNR */
			Ltmp1 = L_add(Ltmp1, Pow2(hi1, lo1));
		}
		xt = fn10Log10(Ltmp1, 4+3);			/* average by 16, inverse compensation 2^3 */

		/* Estimate long-term "peak" SNR */							test(),test();
		if (sub(xt, st->tsnr) > 0)
		{
			/* tsnr = 0.9*tsnr + 0.1*xt; */
			st->tsnr = round(L_add(L_mult(29491, st->tsnr), L_mult(3277, xt)));
		}
		/* else if (xt > 0.625*tsnr) */	
		else if (sub(xt, mult(20480, st->tsnr)) > 0)
		{
			/* tsnr = 0.998*tsnr + 0.002*xt; */
			st->tsnr = round(L_add(L_mult(32702, st->tsnr), L_mult(66, xt)));
		}
	}

	/* Quantize the long-term SNR in 3 dB steps, limit to 0 <= tsnrq <= 19 */
	tsnrq = shr(mult(st->tsnr, 10923), 8);

	/* tsnrq = min(19, max(0, tsnrq)); */								test(),test();
	if (sub(tsnrq, 19) > 0)
	{
		tsnrq = 19;										move16();
	}
	else if (tsnrq < 0)
	{
		tsnrq = 0;										move16();
	}

	/* Calculate the negative SNR sensitivity bias */
													test();
	if (xt < 0)
	{
		/* negSNRvar = 0.99*negSNRvar + 0.01*xt*xt; */
		/*   xt scaled as 7,8 => xt*xt scaled as 14,17, shift to 7,8 and round */
		tmp = round(L_shl(L_mult(xt, xt), 7));
		st->negSNRvar = round(L_add(L_mult(32440, st->negSNRvar), L_mult(328, tmp)));

		/* if (negSNRvar > 4.0) negSNRvar = 4.0;  */						test();
		if (sub(st->negSNRvar, 1024) > 0)
		{
			st->negSNRvar = 1024;								move16();
		}

		/* negSNRbias = max(12.0*(negSNRvar - 0.65), 0.0); */
		tmp = mult_r(shl(sub(st->negSNRvar, 166), 4), 24576);					test();

		if (tmp < 0)
		{
			st->negSNRbias = 0;								move16();
		}
		else
		{
			st->negSNRbias = shr(tmp, 8);
		}
	}


	/* Determine VAD as a function of the voice metric sum and quantized SNR */

	tmp = add(vm_threshold_table[tsnrq], st->negSNRbias);						test();
	if (sub(vm_sum, tmp) > 0)
	{
		ivad = 1;										move16();
		st->burstcount = add(st->burstcount, 1);						test();
		if (sub(st->burstcount, burstcount_table[tsnrq]) > 0)
		{
			st->hangover = hangover_table[tsnrq];						move16();
		}
	}
	else
	{
		st->burstcount = 0;									move16();
		st->hangover = sub(st->hangover, 1);							test();
		if (st->hangover <= 0)
		{
			ivad = 0;									move16();
			st->hangover = 0;								move16();
		}
		else
		{
			ivad = 1;									move16();
		}
	}


	/* Calculate log spectral deviation */
	ch_enrg_dev = 0;										move16();
													test();
	if (L_sub(st->Lframe_cnt, 1) == 0)
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			st->ch_enrg_long_db[i] = ch_enrg_db[i];						move16();
		}
	}
	else
	{
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{
			tmp = abs_s(sub(st->ch_enrg_long_db[i], ch_enrg_db[i]));
			ch_enrg_dev = add(ch_enrg_dev, tmp);
		}
	}

	/*
	 * Calculate long term integration constant as a function of instantaneous SNR
	 * (i.e., high SNR (tsnr dB) -> slower integration (alpha = HIGH_ALPHA),
	 *         low SNR (0 dB) -> faster integration (alpha = LOW_ALPHA)
	 */

	/* alpha = HIGH_ALPHA - ALPHA_RANGE * (tsnr - xt) / tsnr, low <= alpha <= high */
	tmp = sub(st->tsnr, xt);						test(),logic16(),test(),test();
	if (tmp <= 0 || st->tsnr <= 0)
	{
		alpha = HIGH_ALPHA;								move16();
		one_m_alpha = 32768L-HIGH_ALPHA;						move16();
	}
	else if (sub(tmp, st->tsnr) > 0)
	{
		alpha = LOW_ALPHA;								move16();
		one_m_alpha = 32768L-LOW_ALPHA;							move16();
	}
	else
	{
		tmp = div_s(tmp, st->tsnr);
		alpha = sub(HIGH_ALPHA, mult(ALPHA_RANGE, tmp));
		one_m_alpha = sub(32767, alpha);
	}

	/* Calc long term log spectral energy */
	for (i = LO_CHAN; i <= HI_CHAN; i++)
	{
		Ltmp1 = L_mult(one_m_alpha, ch_enrg_db[i]);
		Ltmp2 = L_mult(alpha, st->ch_enrg_long_db[i]);
		st->ch_enrg_long_db[i] = round(L_add(Ltmp1, Ltmp2));
	}


	/* Set or clear the noise update flags */
	update_flag = FALSE;										move16();
	st->fupdate_flag = FALSE;									move16();
													test(),test();
	if (sub(vm_sum, UPDATE_THLD) <= 0)
	{												test();
		if (st->burstcount == 0)
		{
			update_flag = TRUE;								move16();
			st->update_cnt = 0;								move16();
		}
	}
	else if (L_sub(Ltce, noise_floor_chan[st->shift_state]) > 0)
	{												test();
		if (sub(ch_enrg_dev, DEV_THLD) < 0)
		{											test();
			if (p2a_flag == FALSE)
			{										test();
				if (st->LTP_flag == FALSE)
				{
					st->update_cnt = add(st->update_cnt, 1);			test();
					if (sub(st->update_cnt, UPDATE_CNT_THLD) >= 0)
					{
						update_flag = TRUE;					move16();
						st->fupdate_flag = TRUE;				move16();
					}
				}
			}
		}
	}
													test();
	if (sub(st->update_cnt, st->last_update_cnt) == 0)
	{
		st->hyster_cnt = add(st->hyster_cnt, 1);
	}
	else
	{
		st->hyster_cnt = 0;									move16();
	}

	st->last_update_cnt = st->update_cnt;								move16();
													test();
	if (sub(st->hyster_cnt, HYSTER_CNT_THLD) > 0)
	{
		st->update_cnt = 0;									move16();
	}


	/* Conditionally update the channel noise estimates */
													test();
	if (update_flag == TRUE)
	{
		/* Check shift state */									test();
		if (st->shift_state == 1)
		{
			/* get factor to shift ch_enrg[] from state 1 to 0 (noise always state 0) */
			tmp = state_change_shift_r[0];							move16();
		}
		else
		{
			/* No shift if already state 0 */
			tmp = 0;									move16();
		}

		/* Update noise energy estimate */
		for (i = LO_CHAN; i <= HI_CHAN; i++)
		{											test();
			/* integrate over time: en[i] = (1-alpha)*en[i] + alpha*e[n] */
			/* (extract with shift compensation for state 1) */
			L_Extract (L_shr(st->Lch_enrg[i], tmp), &hi1, &lo1);
			Ltmp = Mpy_32_16(hi1, lo1, CNE_SM_FAC);

			L_Extract (st->Lch_noise[i], &hi1, &lo1);
			st->Lch_noise[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, ONE_MINUS_CNE_SM_FAC));	move32();

			/* Limit low level noise */							test();
			if (L_sub(st->Lch_noise[i], MIN_NOISE_ENRG_0) < 0)
			{
				st->Lch_noise[i] = MIN_NOISE_ENRG_0;					move32();
			}
		}
	}

	return(ivad);
}								/* end of vad2 () */


/**** Other related functions *****/

/***************************************************************************
 *
 *   FUNCTION NAME: vad2_reset()
 *
 *   PURPOSE:
 *     The purpose of this function is to initialise the vad2() state
 *     variables.
 *
 *   INPUTS:
 *
 *     &st
 *                     pointer to data structure of vad2 state variables
 *
 *   OUTPUTS:
 *
 *     none
 *
 *   RETURN VALUE:
 *
 *     none
 *
 *   DESCRIPTION:
 *
 *                     Set all values in vad2 state to zero.  Since it is
 *                     known that all elements in the structure contain
 *                     16 and 32 bit fixed point elements, the initialisation
 *                     is performed by zeroing out the number of bytes in the
 *                     structure divided by two.
 *
 *************************************************************************/

void vad2_reset (vadState2 * st)
{
	memset(st, 0, sizeof(vadState2));
}						/* end of vad2_reset () */