view libtwamr/d_plsf_3.c @ 420:eced57698c03

libtwamr: implement test sequence output
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 07 May 2024 05:07:41 +0000
parents 05a46720af0f
children
line wrap: on
line source

/*
********************************************************************************
*
*      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001
*                                R99   Version 3.3.0                
*                                REL-4 Version 4.1.0                
*
********************************************************************************
*
*      File             : d_plsf_3.c
*      Purpose          : Decodes the LSP parameters using the received
*                         quantization indices. 1st order MA prediction and
*                         split by 3 vector quantization (split-VQ)
*
********************************************************************************
*/

/*
********************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
********************************************************************************
*/
#include "namespace.h"
#include "d_plsf.h"

/*
********************************************************************************
*                         INCLUDE FILES
********************************************************************************
*/
#include "typedef.h"
#include "basic_op.h"
#include "no_count.h"
#include "lsp_lsf.h"
#include "reorder.h"
#include "memops.h"
#include "q_plsf3_tab.h"

/*
********************************************************************************
*                         LOCAL VARIABLES AND TABLES
********************************************************************************
*/

/* ALPHA    ->  0.9                                            */
/* ONE_ALPHA-> (1.0-ALPHA)                                     */

#define ALPHA     29491
#define ONE_ALPHA 3277

/*
********************************************************************************
*                         PUBLIC PROGRAM CODE
********************************************************************************
*/
/*************************************************************************
 *
 *  FUNCTION:   D_plsf_3()
 *
 *  PURPOSE: Decodes the LSP parameters using the received quantization
 *           indices.1st order MA prediction and split by 3 vector
 *           quantization (split-VQ)
 *
 *************************************************************************/

void D_plsf_3(
    D_plsfState *st,   /* i/o: State struct                               */
    enum Mode mode,    /* i  : coder mode                                 */
    Word16 bfi,        /* i  : bad frame indicator (set to 1 if a         */
                       /*      bad frame is received)                     */
    Word16 * indice,   /* i  : quantization indices of 3 submatrices, Q0  */
    Word16 * lsp1_q    /* o  : quantized 1st LSP vector,              Q15 */
)
{
    Word16 i, index;
    const Word16 *p_cb1, *p_cb2, *p_cb3, *p_dico;
    Word16 temp;
    Word16 lsf1_r[M];
    Word16 lsf1_q[M];
    
    test ();
    if (bfi != 0)   /* if bad frame */
    {
        /* use the past LSFs slightly shifted towards their mean */

        for (i = 0; i < M; i++)
        {
            /* lsfi_q[i] = ALPHA*past_lsf_q[i] + ONE_ALPHA*mean_lsf3[i]; */

            lsf1_q[i] = add(mult(st->past_lsf_q[i], ALPHA),
                            mult(mean_lsf3[i], ONE_ALPHA));
                                                move16 ();
        }

        /* estimate past quantized residual to be used in next frame */
	test();
	if (sub(mode, MRDTX) != 0) {
	  for (i = 0; i < M; i++) {
            /* temp  = mean_lsf3[i] +  past_r2_q[i] * PRED_FAC; */
	    
            temp = add(mean_lsf3[i], mult(st->past_r_q[i], pred_fac[i]));
	    
            st->past_r_q[i] = sub(lsf1_q[i], temp);                   move16 ();
	  }
	} else {
	  for (i = 0; i < M; i++) {
            /* temp  = mean_lsf3[i] +  past_r2_q[i]; */
	    
            temp = add(mean_lsf3[i], st->past_r_q[i]);
            st->past_r_q[i] = sub(lsf1_q[i], temp);                   move16 ();
	  }	  
	}
    }
    else  /* if good LSFs received */
    {
       test (); test ();
       if (sub (mode, MR475) == 0 || sub (mode, MR515) == 0)
       {   /* MR475, MR515 */
          p_cb1 = dico1_lsf3;                 move16 ();
          p_cb2 = dico2_lsf3;                 move16 ();
          p_cb3 = mr515_3_lsf;                move16 ();
       }
       else if (sub (mode, MR795) == 0)
       {   /* MR795 */
          test();
          p_cb1 = mr795_1_lsf;                move16 ();
          p_cb2 = dico2_lsf3;                 move16 ();
          p_cb3 = dico3_lsf3;                 move16 ();
       }
       else 
       {   /* MR59, MR67, MR74, MR102, MRDTX */
          test();          
          p_cb1 = dico1_lsf3;                 move16 ();
          p_cb2 = dico2_lsf3;                 move16 ();
          p_cb3 = dico3_lsf3;                 move16 ();
       }
       
       /* decode prediction residuals from 3 received indices */

        index = *indice++;                      move16 ();
        p_dico = &p_cb1[add(index, add(index, index))];               move16 ();
        lsf1_r[0] = *p_dico++;                  move16 ();
        lsf1_r[1] = *p_dico++;                  move16 ();
        lsf1_r[2] = *p_dico++;                  move16 ();

        index = *indice++;                      move16 ();
        
        test (); test ();
        if ((sub (mode, MR475) == 0) || (sub (mode, MR515) == 0))
        {   /* MR475, MR515 only using every second entry */
            index = shl(index,1);
        }
        
        p_dico = &p_cb2[add(index, add(index, index))];               move16 ();
        lsf1_r[3] = *p_dico++;                  move16 ();
        lsf1_r[4] = *p_dico++;                  move16 ();
        lsf1_r[5] = *p_dico++;                  move16 ();

        index = *indice++;                      move16 ();
        p_dico = &p_cb3[shl(index, 2)];         move16 ();
        lsf1_r[6] = *p_dico++;                  move16 ();
        lsf1_r[7] = *p_dico++;                  move16 ();
        lsf1_r[8] = *p_dico++;                  move16 ();
        lsf1_r[9] = *p_dico++;                  move16 ();

        /* Compute quantized LSFs and update the past quantized residual */

	if (sub(mode, MRDTX) != 0) 
           for (i = 0; i < M; i++) {
              temp = add(mean_lsf3[i], mult(st->past_r_q[i], pred_fac[i]));
              lsf1_q[i] = add(lsf1_r[i], temp);   move16 ();
              st->past_r_q[i] = lsf1_r[i];        move16 ();
           }
        else
           for (i = 0; i < M; i++) {
              temp = add(mean_lsf3[i], st->past_r_q[i]);
              lsf1_q[i] = add(lsf1_r[i], temp);   move16 ();
              st->past_r_q[i] = lsf1_r[i];        move16 ();
           }
    }

    /* verification that LSFs has minimum distance of LSF_GAP Hz */

    Reorder_lsf(lsf1_q, LSF_GAP, M);

    Copy (lsf1_q, st->past_lsf_q, M);

    /*  convert LSFs to the cosine domain */

    Lsf_lsp(lsf1_q, lsp1_q, M);

    return;
}

void Init_D_plsf_3(D_plsfState *st,  /* i/o: State struct                */
		   Word16 index      /* i  : past_rq_init[] index [0, 7] */)
{
  Copy(&past_rq_init[index * M], st->past_r_q, M);
}