FreeCalypso > hg > gsm-codec-lib
view libtwamr/c1035pf.c @ 585:3c6bf0d26ee7 default tip
TW-TS-005 reader: fix maximum line length bug
TW-TS-005 section 4.1 states:
The maximum allowed length of each line is 80 characters, not
including the OS-specific newline encoding.
The implementation of this line length limit in the TW-TS-005 hex file
reader function in the present suite was wrong, such that lines of
the full maximum length could not be read. Fix it.
Note that this bug affects comment lines too, not just actual RTP
payloads. Neither Annex A nor Annex B features an RTP payload format
that goes to the maximum of 40 bytes, but if a comment line goes to
the maximum allowed length of 80 characters not including the
terminating newline, the bug will be triggered, necessitating
the present fix.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Tue, 25 Feb 2025 07:49:28 +0000 |
parents | 6fd6c5fc1aa4 |
children |
line wrap: on
line source
/* ******************************************************************************** * * GSM AMR-NB speech codec R98 Version 7.6.0 December 12, 2001 * R99 Version 3.3.0 * REL-4 Version 4.1.0 * ******************************************************************************** * * File : c1035pf.c * Purpose : Searches a 35 bit algebraic codebook containing * : 10 pulses in a frame of 40 samples. * ******************************************************************************** */ /* ******************************************************************************** * MODULE INCLUDE FILE AND VERSION ID ******************************************************************************** */ #include "namespace.h" #include "c1035pf.h" /* ******************************************************************************** * INCLUDE FILES ******************************************************************************** */ #include "typedef.h" #include "basic_op.h" #include "no_count.h" #include "cnst.h" #include "inv_sqrt.h" #include "set_sign.h" #include "cor_h.h" #include "s10_8pf.h" #include "graytab.h" /* ******************************************************************************** * LOCAL VARIABLES AND TABLES ******************************************************************************** */ #define NB_PULSE 10 /* ******************************************************************************** * LOCAL PROGRAM CODE ******************************************************************************** */ static void q_p ( Word16 *ind, /* Pulse position */ Word16 n /* Pulse number */ ) { Word16 tmp; tmp = *ind; move16 (); test (); if (sub (n, 5) < 0) { *ind = (tmp & 0x8) | gray[tmp & 0x7]; logic16 (); logic16 (); logic16 (); move16 (); } else { *ind = gray[tmp & 0x7]; logic16 (); move16 (); } } /************************************************************************* * * FUNCTION: build_code() * * PURPOSE: Builds the codeword, the filtered codeword and index of the * codevector, based on the signs and positions of 10 pulses. * *************************************************************************/ static void build_code ( Word16 codvec[], /* (i) : position of pulses */ Word16 sign[], /* (i) : sign of d[n] */ Word16 cod[], /* (o) : innovative code vector */ Word16 h[], /* (i) : impulse response of weighted synthesis filter*/ Word16 y[], /* (o) : filtered innovative code */ Word16 indx[] /* (o) : index of 10 pulses (sign+position) */ ) { Word16 i, j, k, track, index, _sign[NB_PULSE]; Word16 *p0, *p1, *p2, *p3, *p4, *p5, *p6, *p7, *p8, *p9; Word32 s; for (i = 0; i < L_CODE; i++) { cod[i] = 0; move16 (); } for (i = 0; i < NB_TRACK; i++) { indx[i] = -1; move16 (); } for (k = 0; k < NB_PULSE; k++) { /* read pulse position */ i = codvec[k]; move16 (); /* read sign */ j = sign[i]; move16 (); index = mult (i, 6554); /* index = pos/5 */ /* track = pos%5 */ track = sub (i, extract_l (L_shr (L_mult (index, 5), 1))); test (); if (j > 0) { cod[i] = add (cod[i], 4096); move16 (); _sign[k] = 8192; move16 (); } else { cod[i] = sub (cod[i], 4096); move16 (); _sign[k] = -8192; move16 (); index = add (index, 8); } test (); move16 (); if (indx[track] < 0) { indx[track] = index; move16 (); } else { test (); logic16 (); logic16 (); if (((index ^ indx[track]) & 8) == 0) { /* sign of 1st pulse == sign of 2nd pulse */ test (); if (sub (indx[track], index) <= 0) { indx[track + 5] = index; move16 (); } else { indx[track + 5] = indx[track]; move16 (); indx[track] = index; move16 (); } } else { /* sign of 1st pulse != sign of 2nd pulse */ test (); logic16 (); logic16 (); if (sub ((indx[track] & 7), (index & 7)) <= 0) { indx[track + 5] = indx[track]; move16 (); indx[track] = index; move16 (); } else { indx[track + 5] = index; move16 (); } } } } p0 = h - codvec[0]; move16 (); p1 = h - codvec[1]; move16 (); p2 = h - codvec[2]; move16 (); p3 = h - codvec[3]; move16 (); p4 = h - codvec[4]; move16 (); p5 = h - codvec[5]; move16 (); p6 = h - codvec[6]; move16 (); p7 = h - codvec[7]; move16 (); p8 = h - codvec[8]; move16 (); p9 = h - codvec[9]; move16 (); for (i = 0; i < L_CODE; i++) { s = 0; move32 (); s = L_mac (s, *p0++, _sign[0]); s = L_mac (s, *p1++, _sign[1]); s = L_mac (s, *p2++, _sign[2]); s = L_mac (s, *p3++, _sign[3]); s = L_mac (s, *p4++, _sign[4]); s = L_mac (s, *p5++, _sign[5]); s = L_mac (s, *p6++, _sign[6]); s = L_mac (s, *p7++, _sign[7]); s = L_mac (s, *p8++, _sign[8]); s = L_mac (s, *p9++, _sign[9]); y[i] = round (s); move16 (); } } /* ******************************************************************************** * PUBLIC PROGRAM CODE ******************************************************************************** */ /************************************************************************* * * FUNCTION: code_10i40_35bits() * * PURPOSE: Searches a 35 bit algebraic codebook containing 10 pulses * in a frame of 40 samples. * * DESCRIPTION: * The code contains 10 nonzero pulses: i0...i9. * All pulses can have two possible amplitudes: +1 or -1. * The 40 positions in a subframe are divided into 5 tracks of * interleaved positions. Each track contains two pulses. * The pulses can have the following possible positions: * * i0, i5 : 0, 5, 10, 15, 20, 25, 30, 35. * i1, i6 : 1, 6, 11, 16, 21, 26, 31, 36. * i2, i7 : 2, 7, 12, 17, 22, 27, 32, 37. * i3, i8 : 3, 8, 13, 18, 23, 28, 33, 38. * i4, i9 : 4, 9, 14, 19, 24, 29, 34, 39. * * Each pair of pulses require 1 bit for their signs and 6 bits for their * positions (3 bits + 3 bits). This results in a 35 bit codebook. * The function determines the optimal pulse signs and positions, builds * the codevector, and computes the filtered codevector. * *************************************************************************/ void code_10i40_35bits ( Word16 x[], /* (i) : target vector */ Word16 cn[], /* (i) : residual after long term prediction */ Word16 h[], /* (i) : impulse response of weighted synthesis filter h[-L_subfr..-1] must be set to zero */ Word16 cod[], /* (o) : algebraic (fixed) codebook excitation */ Word16 y[], /* (o) : filtered fixed codebook excitation */ Word16 indx[] /* (o) : index of 10 pulses (sign + position) */ ) { Word16 ipos[NB_PULSE], pos_max[NB_TRACK], codvec[NB_PULSE]; Word16 dn[L_CODE], sign[L_CODE]; Word16 rr[L_CODE][L_CODE], i; cor_h_x (h, x, dn, 2); set_sign12k2 (dn, cn, sign, pos_max, NB_TRACK, ipos, STEP); cor_h (h, sign, rr); search_10and8i40 (NB_PULSE, STEP, NB_TRACK, dn, rr, ipos, pos_max, codvec); build_code (codvec, sign, cod, h, y, indx); for (i = 0; i < 10; i++) { q_p (&indx[i], i); } return; }