FreeCalypso > hg > gsm-codec-lib
changeset 268:0cfb7c95cce2
libgsmfr2: integrate lpc.c from libgsm
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 14 Apr 2024 01:50:48 +0000 |
parents | 65d3304502bd |
children | bd2271cb95d4 |
files | libgsmfr2/Makefile libgsmfr2/lpc.c |
diffstat | 2 files changed, 283 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/libgsmfr2/Makefile Sun Apr 14 01:01:19 2024 +0000 +++ b/libgsmfr2/Makefile Sun Apr 14 01:50:48 2024 +0000 @@ -1,7 +1,7 @@ CC= gcc CFLAGS= -O2 OBJS= add.o comfort_noise.o dec_main.o ed_state.o enc_main.o long_term.o \ - pack_frame.o pack_frame2.o pp_bad.o pp_good.o pp_state.o prng.o \ + lpc.o pack_frame.o pack_frame2.o pp_bad.o pp_good.o pp_state.o prng.o \ sidclass.o silence_frame.o unpack_frame.o unpack_frame2.o xmaxc_mean.o HDRS= ed_internal.h ed_state.h pp_internal.h pp_state.h tw_gsmfr.h typedef.h LIB= libgsmfr2.a
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libgsmfr2/lpc.c Sun Apr 14 01:50:48 2024 +0000 @@ -0,0 +1,282 @@ +/* + * This C source file has been adapted from TU-Berlin libgsm source, + * original notice follows: + * + * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische + * Universitaet Berlin. See the accompanying file "COPYRIGHT" for + * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. + */ + +#include <stdint.h> +#include <assert.h> +#include "tw_gsmfr.h" +#include "typedef.h" +#include "ed_state.h" +#include "ed_internal.h" + +/* + * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION + */ + +/* 4.2.4 */ + +static void Autocorrelation ( + word * s, /* [0..159] IN/OUT */ + longword * L_ACF) /* [0..8] OUT */ +/* + * The goal is to compute the array L_ACF[k]. The signal s[i] must + * be scaled in order to avoid an overflow situation. + */ +{ + register int k, i; + + word temp, smax, scalauto; + + /* Dynamic scaling of the array s[0..159] + */ + + /* Search for the maximum. + */ + smax = 0; + for (k = 0; k <= 159; k++) { + temp = GSM_ABS( s[k] ); + if (temp > smax) smax = temp; + } + + /* Computation of the scaling factor. + */ + if (smax == 0) scalauto = 0; + else { + assert(smax > 0); + scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */ + } + + /* Scaling of the array s[0...159] + */ + + if (scalauto > 0) { + +# define SCALE(n) \ + case n: for (k = 0; k <= 159; k++) \ + s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\ + break; + + switch (scalauto) { + SCALE(1) + SCALE(2) + SCALE(3) + SCALE(4) + } +# undef SCALE + } + + /* Compute the L_ACF[..]. + */ + { + word * sp = s; + word sl = *sp; + +# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]); + +# define NEXTI sl = *++sp + + + for (k = 9; k--; L_ACF[k] = 0) ; + + STEP (0); + NEXTI; + STEP(0); STEP(1); + NEXTI; + STEP(0); STEP(1); STEP(2); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); + NEXTI; + STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7); + + for (i = 8; i <= 159; i++) { + + NEXTI; + + STEP(0); + STEP(1); STEP(2); STEP(3); STEP(4); + STEP(5); STEP(6); STEP(7); STEP(8); + } + + for (k = 9; k--; L_ACF[k] <<= 1) ; + + } + /* Rescaling of the array s[0..159] + */ + if (scalauto > 0) { + assert(scalauto <= 4); + for (k = 160; k--; *s++ <<= scalauto) ; + } +} + +/* 4.2.5 */ + +static void Reflection_coefficients ( + longword * L_ACF, /* 0...8 IN */ + register word * r /* 0...7 OUT */ +) +{ + register int i, m, n; + register word temp; + register longword ltmp; + word ACF[9]; /* 0..8 */ + word P[ 9]; /* 0..8 */ + word K[ 9]; /* 2..8 */ + + /* Schur recursion with 16 bits arithmetic. + */ + + if (L_ACF[0] == 0) { + for (i = 8; i--; *r++ = 0) ; + return; + } + + assert( L_ACF[0] != 0 ); + temp = gsm_norm( L_ACF[0] ); + + assert(temp >= 0 && temp < 32); + + /* ? overflow ? */ + for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 ); + + /* Initialize array P[..] and K[..] for the recursion. + */ + + for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ]; + for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ]; + + /* Compute reflection coefficients + */ + for (n = 1; n <= 8; n++, r++) { + + temp = P[1]; + temp = GSM_ABS(temp); + if (P[0] < temp) { + for (i = n; i <= 8; i++) *r++ = 0; + return; + } + + *r = gsm_div( temp, P[0] ); + + assert(*r >= 0); + if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */ + assert (*r != MIN_WORD); + if (n == 8) return; + + /* Schur recursion + */ + temp = GSM_MULT_R( P[1], *r ); + P[0] = GSM_ADD( P[0], temp ); + + for (m = 1; m <= 8 - n; m++) { + temp = GSM_MULT_R( K[ m ], *r ); + P[m] = GSM_ADD( P[ m+1 ], temp ); + + temp = GSM_MULT_R( P[ m+1 ], *r ); + K[m] = GSM_ADD( K[ m ], temp ); + } + } +} + +/* 4.2.6 */ + +static void Transformation_to_Log_Area_Ratios ( + register word * r /* 0..7 IN/OUT */ +) +/* + * The following scaling for r[..] and LAR[..] has been used: + * + * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1. + * LAR[..] = integer( real_LAR[..] * 16384 ); + * with -1.625 <= real_LAR <= 1.625 + */ +{ + register word temp; + register int i; + + /* Computation of the LAR[0..7] from the r[0..7] + */ + for (i = 1; i <= 8; i++, r++) { + + temp = *r; + temp = GSM_ABS(temp); + assert(temp >= 0); + + if (temp < 22118) { + temp >>= 1; + } else if (temp < 31130) { + assert( temp >= 11059 ); + temp -= 11059; + } else { + assert( temp >= 26112 ); + temp -= 26112; + temp <<= 2; + } + + *r = *r < 0 ? -temp : temp; + assert( *r != MIN_WORD ); + } +} + +/* 4.2.7 */ + +static void Quantization_and_coding ( + register word * LAR /* [0..7] IN/OUT */ +) +{ + register word temp; + longword ltmp; + + /* This procedure needs four tables; the following equations + * give the optimum scaling for the constants: + * + * A[0..7] = integer( real_A[0..7] * 1024 ) + * B[0..7] = integer( real_B[0..7] * 512 ) + * MAC[0..7] = maximum of the LARc[0..7] + * MIC[0..7] = minimum of the LARc[0..7] + */ + +# undef STEP +# define STEP( A, B, MAC, MIC ) \ + temp = GSM_MULT( A, *LAR ); \ + temp = GSM_ADD( temp, B ); \ + temp = GSM_ADD( temp, 256 ); \ + temp = SASR( temp, 9 ); \ + *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \ + LAR++; + + STEP( 20480, 0, 31, -32 ); + STEP( 20480, 0, 31, -32 ); + STEP( 20480, 2048, 15, -16 ); + STEP( 20480, -2560, 15, -16 ); + + STEP( 13964, 94, 7, -8 ); + STEP( 15360, -1792, 7, -8 ); + STEP( 8534, -341, 3, -4 ); + STEP( 9036, -1144, 3, -4 ); + +# undef STEP +} + +void Gsm_LPC_Analysis ( + struct gsmfr_0610_state *S, + word * s, /* 0..159 signals IN/OUT */ + word * LARc) /* 0..7 LARc's OUT */ +{ + longword L_ACF[9]; + + Autocorrelation (s, L_ACF ); + Reflection_coefficients (L_ACF, LARc ); + Transformation_to_Log_Area_Ratios (LARc); + Quantization_and_coding (LARc); +}