0
|
1 /**
|
|
2 * @file mks_functions.c
|
|
3 *
|
|
4 * Implementation of MKS functions.
|
|
5 *
|
|
6 * @author Laurent Sollier (l-sollier@ti.com)
|
|
7 * @version 0.1
|
|
8 */
|
|
9
|
|
10 /*
|
|
11 * History:
|
|
12 *
|
|
13 * Date Author Modification
|
|
14 * ----------------------------------------
|
|
15 * 11/16/2001 L Sollier Create
|
|
16 *
|
|
17 *
|
|
18 * (C) Copyright 2001 by Texas Instruments Incorporated, All Rights Reserved
|
|
19 */
|
|
20
|
|
21 #include "mks/mks_i.h"
|
|
22 #include "mks/mks_api.h"
|
|
23 #include "mks/mks_env.h"
|
|
24
|
|
25 #include "kpd/kpd_api.h"
|
|
26
|
|
27 #include "rvm/rvm_use_id_list.h"
|
|
28 #include "rv/rv_general.h"
|
|
29
|
|
30 #include <string.h>
|
|
31
|
|
32
|
|
33 /* This value is set in the T_KEY_SEQUENCE_INFOS structure when post-sequence is on going */
|
|
34 #define POST_SEQUENCE_COMPLETED 0x10
|
|
35
|
|
36 /** This structure defines */
|
|
37 typedef struct { char name[KPD_MAX_CHAR_NAME+1];
|
|
38 T_KPD_VIRTUAL_KEY_ID sequence_key[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE];
|
|
39 UINT8 nb_key_of_sequence;
|
|
40 UINT8 completion_type;
|
|
41 UINT8 nb_key_for_post_sequence;
|
|
42 UINT8 nb_key_sent_for_post_sequence;
|
|
43 T_RV_RETURN return_path;
|
|
44 } T_KEY_SEQUENCE_INFOS;
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49 /** Definition of the different magic key sequence.
|
|
50 * Note that the magic key sequence is defined by a KPD_KEY_NULL key Id.
|
|
51 */
|
|
52 static T_KEY_SEQUENCE_INFOS* key_sequence_table[MKS_NB_MAX_OF_KEY_SEQUENCE] = {0};
|
|
53
|
|
54 /* Subscriber Id for keypad driver */
|
|
55 static T_KPD_SUBSCRIBER subscriber_id;
|
|
56
|
|
57 /* Number of key sequence registered */
|
|
58 static UINT8 nb_key_sequence = 0;
|
|
59
|
|
60 /* Key pressed history */
|
|
61 static T_KPD_VIRTUAL_KEY_ID key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE];
|
|
62
|
|
63
|
|
64 /** External declaration */
|
|
65 extern T_MKS_ENV_CTRL_BLK* mks_env_ctrl_blk;
|
|
66
|
|
67 /**
|
|
68 * @name Functions implementation
|
|
69 *
|
|
70 */
|
|
71 /*@{*/
|
|
72
|
|
73
|
|
74 /**
|
|
75 * function: mks_add_key_sequence_i
|
|
76 */
|
|
77 T_RV_RET mks_add_key_sequence_i(T_MKS_INFOS_KEY_SEQUENCE_MSG* infos_key_sequence_p)
|
|
78 {
|
|
79 UINT8 i;
|
|
80 T_RVF_MB_STATUS mb_status;
|
|
81 T_RV_RET ret = RV_OK;
|
|
82 T_MKS_INFOS_KEY_SEQUENCE* infos_p = &(infos_key_sequence_p->key_sequence_infos);
|
|
83
|
|
84 if (nb_key_sequence < MKS_NB_MAX_OF_KEY_SEQUENCE)
|
|
85 {
|
|
86 /* Reserve memory for message */
|
|
87 mb_status = rvf_get_buf (mks_env_ctrl_blk->prim_id, sizeof(T_KEY_SEQUENCE_INFOS), (void **) &key_sequence_table[nb_key_sequence]);
|
|
88
|
|
89 if (mb_status != RVF_RED) /* Memory allocation success */
|
|
90 {
|
|
91 /* Fill the structure */
|
|
92 for (i = 0; i < infos_p->nb_key_of_sequence; i++)
|
|
93 key_sequence_table[nb_key_sequence]->sequence_key[i] = infos_p->key_id[i];
|
|
94
|
|
95 key_sequence_table[nb_key_sequence]->nb_key_of_sequence = infos_p->nb_key_of_sequence;
|
|
96 key_sequence_table[nb_key_sequence]->completion_type = infos_p->completion_type;
|
|
97 key_sequence_table[nb_key_sequence]->return_path = infos_p->return_path;
|
|
98 key_sequence_table[nb_key_sequence]->nb_key_for_post_sequence = infos_p->nb_key_for_post_sequence;
|
|
99 infos_p->name[KPD_MAX_CHAR_NAME] = 0;
|
|
100 strcpy(key_sequence_table[nb_key_sequence]->name, infos_p->name);
|
|
101
|
|
102 key_sequence_table[nb_key_sequence]->nb_key_sent_for_post_sequence = 0;
|
|
103
|
|
104 /* Update number of key sequence */
|
|
105 nb_key_sequence++;
|
|
106
|
|
107 ret = RV_OK;
|
|
108 }
|
|
109 else
|
|
110 {
|
|
111 MKS_SEND_TRACE("MKS: Memory allocation error", RV_TRACE_LEVEL_ERROR);
|
|
112 ret = RV_MEMORY_ERR;
|
|
113 }
|
|
114 }
|
|
115 else
|
|
116 {
|
|
117 /* Maximum of magic key sequence registered*/
|
|
118 ret = RV_INTERNAL_ERR;
|
|
119 }
|
|
120
|
|
121 return ret;
|
|
122 }
|
|
123
|
|
124 /**
|
|
125 * function: mks_remove_key_sequence_i
|
|
126 *
|
|
127 */
|
|
128 T_RV_RET mks_remove_key_sequence_i(T_MKS_REMOVE_KEY_SEQUENCE_MSG* remove_key_sequence_p)
|
|
129 {
|
|
130 UINT8 i;
|
|
131
|
|
132 for (i = 0; i < nb_key_sequence; i++)
|
|
133 {
|
|
134 /* Compare name of the key sequence */
|
|
135 if ( !(strcmp(key_sequence_table[i]->name, remove_key_sequence_p->name)) )
|
|
136 {
|
|
137 /* Free memory used for the key sequence */
|
|
138 rvf_free_buf(key_sequence_table[i]);
|
|
139 nb_key_sequence--;
|
|
140
|
|
141 /* Sort out the table of key sequence */
|
|
142 key_sequence_table[i] = key_sequence_table[nb_key_sequence];
|
|
143 key_sequence_table[nb_key_sequence] = 0;
|
|
144 break;
|
|
145 }
|
|
146 }
|
|
147
|
|
148 return RV_OK;
|
|
149 }
|
|
150
|
|
151 /**
|
|
152 * function: mks_check_key_sequence
|
|
153 */
|
|
154 void mks_check_key_sequence(T_KPD_KEY_EVENT_MSG* key_event_p)
|
|
155 {
|
|
156 UINT8 i,j, nb_key_of_sequence;
|
|
157 BOOL key_sequence_completed = TRUE;
|
|
158
|
|
159 /* Stop timer */
|
|
160 rvf_stop_timer(RVF_TIMER_0);
|
|
161
|
|
162 /* Update key pressed history */
|
|
163 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-1; i++)
|
|
164 key_history[i] = key_history[i+1];
|
|
165
|
|
166 key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-1] = key_event_p->key_info.virtual_key_id;
|
|
167
|
|
168 /* Check each key sequence */
|
|
169 for (i = 0; i < nb_key_sequence; i++)
|
|
170 {
|
|
171 if (!(key_sequence_table[i]->completion_type & POST_SEQUENCE_COMPLETED))
|
|
172 {
|
|
173 /* Verify if magic key sequence is completed */
|
|
174 nb_key_of_sequence = key_sequence_table[i]->nb_key_of_sequence;
|
|
175 for (j = 0; j < nb_key_of_sequence; j++)
|
|
176 {
|
|
177 if (key_sequence_table[i]->sequence_key[nb_key_of_sequence-j-1] != key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-j-1])
|
|
178 {
|
|
179 key_sequence_completed = FALSE;
|
|
180 break;
|
|
181 }
|
|
182 }
|
|
183 if (key_sequence_completed == TRUE)
|
|
184 {
|
|
185 if (key_sequence_table[i]->completion_type == MKS_SEQUENCE_COMPLETED)
|
|
186 {
|
|
187 /* Process sequence completed */
|
|
188 mks_send_key_sequence_completed_msg(MKS_SEQUENCE_COMPLETED,
|
|
189 KPD_KEY_NULL,
|
|
190 key_sequence_table[i]->return_path,
|
|
191 key_sequence_table[i]->name);
|
|
192 }
|
|
193 else
|
|
194 {
|
|
195 /* Store info that post-sequence is on going */
|
|
196 key_sequence_table[i]->completion_type |= POST_SEQUENCE_COMPLETED;
|
|
197 }
|
|
198 }
|
|
199 else
|
|
200 key_sequence_completed = TRUE;
|
|
201 }
|
|
202 else
|
|
203 {
|
|
204 /* Notify that magic key sequence is completed */
|
|
205 mks_send_key_sequence_completed_msg(MKS_POST_SEQUENCE,
|
|
206 key_event_p->key_info.virtual_key_id,
|
|
207 key_sequence_table[i]->return_path,
|
|
208 key_sequence_table[i]->name);
|
|
209
|
|
210 key_sequence_table[i]->nb_key_sent_for_post_sequence++;
|
|
211
|
|
212 if (key_sequence_table[i]->nb_key_sent_for_post_sequence == key_sequence_table[i]->nb_key_for_post_sequence)
|
|
213 {
|
|
214 key_sequence_table[i]->nb_key_sent_for_post_sequence = 0;
|
|
215 key_sequence_table[i]->completion_type &= ~POST_SEQUENCE_COMPLETED;
|
|
216 }
|
|
217 }
|
|
218 }
|
|
219
|
|
220 rvf_start_timer(RVF_TIMER_0, RVF_MS_TO_TICKS(MKS_TIME_RESET_KEY_SEQUENCE), FALSE);
|
|
221 }
|
|
222
|
|
223
|
|
224
|
|
225 /**
|
|
226 * function: mks_send_key_sequence_completed_msg
|
|
227 */
|
|
228 void mks_send_key_sequence_completed_msg(UINT8 completion_level,
|
|
229 T_KPD_VIRTUAL_KEY_ID key_id,
|
|
230 T_RV_RETURN return_path,
|
|
231 char* name)
|
|
232 {
|
|
233 T_MKS_SEQUENCE_COMPLETED_MSG* msg_sequence_completed = 0;
|
|
234 T_RVF_MB_STATUS mb_status;
|
|
235
|
|
236 /* Reserve memory for message */
|
|
237 mb_status = rvf_get_buf (mks_env_ctrl_blk->prim_id, sizeof(T_MKS_SEQUENCE_COMPLETED_MSG), (void **) &msg_sequence_completed);
|
|
238
|
|
239 if (mb_status != RVF_RED) /* Memory allocation success */
|
|
240 {
|
|
241 /* Fill the message */
|
|
242 msg_sequence_completed->hdr.msg_id = MKS_SEQUENCE_COMPLETED_MSG;
|
|
243 strcpy(msg_sequence_completed->name, name);
|
|
244 msg_sequence_completed->completion_type = completion_level;
|
|
245 msg_sequence_completed->key_pressed = key_id;
|
|
246
|
|
247 /* Send message to the client */
|
|
248 if (return_path.callback_func != 0)
|
|
249 {
|
|
250 return_path.callback_func((void*) msg_sequence_completed);
|
|
251 rvf_free_buf(msg_sequence_completed);
|
|
252 }
|
|
253 else
|
|
254 {
|
|
255 rvf_send_msg(return_path.addr_id, msg_sequence_completed);
|
|
256 }
|
|
257 }
|
|
258 else
|
|
259 {
|
|
260 MKS_SEND_TRACE("MKS: Memory allocation error", RV_TRACE_LEVEL_ERROR);
|
|
261 }
|
|
262 }
|
|
263
|
|
264
|
|
265 /**
|
|
266 * function: mks_reset_sequence
|
|
267 */
|
|
268 void mks_reset_sequence(void)
|
|
269 {
|
|
270 UINT8 i;
|
|
271
|
|
272 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE; i++)
|
|
273 key_history[i] = KPD_KEY_NULL;
|
|
274 }
|
|
275
|
|
276
|
|
277 /**
|
|
278 * function: mks_initialize_swe
|
|
279 */
|
|
280 void mks_initialize_swe(void)
|
|
281 {
|
|
282 T_RV_RET ret;
|
|
283 T_KPD_VIRTUAL_KEY_TABLE notified_keys;
|
|
284 T_RV_RETURN return_path;
|
|
285 UINT8 i;
|
|
286
|
|
287 /* Initialize key pressed history structure */
|
|
288 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE; i++)
|
|
289 key_history[i] = KPD_KEY_NULL;
|
|
290
|
|
291 /* Subscription to the keypad */
|
|
292 return_path.addr_id = mks_env_ctrl_blk->addr_id;
|
|
293 return_path.callback_func = 0;
|
|
294 notified_keys.nb_notified_keys = KPD_NB_PHYSICAL_KEYS;
|
|
295 ret = kpd_subscribe (&subscriber_id, KPD_DEFAULT_MODE, ¬ified_keys, return_path);
|
|
296
|
|
297 if (ret != RV_OK)
|
|
298 {
|
|
299 MKS_SEND_TRACE("MKS: Unable to subscribe to the keypad", RV_TRACE_LEVEL_DEBUG_HIGH);
|
|
300 }
|
|
301 }
|
|
302
|
|
303
|
|
304 /**
|
|
305 * function: mks_stop_swe
|
|
306 */
|
|
307 void mks_stop_swe(void)
|
|
308 {
|
|
309 T_RV_RET ret;
|
|
310
|
|
311 /* Unsubscribe to the keypad */
|
|
312 ret = kpd_unsubscribe(&subscriber_id);
|
|
313
|
|
314 if (ret != RV_OK)
|
|
315 {
|
|
316 MKS_SEND_TRACE("MKS: Unsubscription error", RV_TRACE_LEVEL_DEBUG_HIGH);
|
|
317 }
|
|
318 }
|
|
319
|
|
320
|
|
321 /*@}*/
|