comparison chipsetsw/drivers/drv_app/ffs/board/fsck.c @ 0:509db1a7b7b8

initial import: leo2moko-r1
author Space Falcon <falcon@ivan.Harhan.ORG>
date Mon, 01 Jun 2015 03:24:05 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:509db1a7b7b8
1 /******************************************************************************
2 * Flash File System (ffs)
3 * Idea, design and coding by Mads Meisner-Jensen, mmj@ti.com
4 *
5 * FFS file system integrity checking, journalling, init and exit
6 *
7 * $Id: fsck.c 1.3.1.1.1.33 Thu, 08 Jan 2004 15:05:23 +0100 tsj $
8 *
9 ******************************************************************************/
10
11 #ifndef TARGET
12 #include "ffs.cfg"
13 #endif
14
15 #include <string.h>
16 #include <assert.h>
17
18 #include "ffs/ffs.h"
19 #include "ffs/board/core.h"
20 #include "ffs/board/drv.h"
21 #include "ffs/board/ffstrace.h"
22
23 /******************************************************************************
24 * Functions
25 ******************************************************************************/
26
27 bref_t blocks_fsck(void);
28 iref_t inodes_fsck(void);
29
30 /******************************************************************************
31 * Init and Exit
32 ******************************************************************************/
33
34 effs_t ffs_initialize(void)
35 {
36 bref_t b;
37 struct inode_s *ip;
38 int i;
39
40 tlw(led_set(0));
41 tlw(led_on(LED_INIT));
42 ttw(str(TTrInit, "initialize {" NL));
43 tw(tr(TR_BEGIN, TrFsck, "ffs_initialize() {\n"));
44
45 // default to non-initialized ffs
46 fs.root = 0;
47 fs.debug[0] = fs.debug[1] = fs.debug[2] = fs.debug[3] = 0;
48 fs.testflags = 0;
49
50 tlw(led_on(LED_DRV_INIT));
51 fs.initerror = ffsdrv_init(); // read manufacturer and device ID
52 tlw(led_off(LED_DRV_INIT));
53 if (fs.initerror < 0) {
54 tlw(led_off(0));
55 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror));
56 ttw(ttr(TTrInit, "} %d" NL, fs.initerror));
57 return fs.initerror;
58 }
59
60 for (i = 0; i < 2; i++)
61 {
62 tlw(led_on(LED_BLOCKS_FSCK));
63 fs.initerror = EFFS_INVALID;
64 fs.initerror = b = blocks_fsck();
65 tlw(led_off(LED_BLOCKS_FSCK));
66 if (fs.initerror < 0) {
67 tlw(led_off(0));
68 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror));
69 ttw(ttr(TTrInit, "} %d" NL, fs.initerror));
70 return fs.initerror;
71 }
72
73 tlw(led_on(LED_INODES_FSCK));
74 fs.initerror = EFFS_INVALID;
75 fs.initerror = inodes_fsck();
76 tlw(led_off(LED_INODES_FSCK));
77 if (fs.initerror < 0) {
78 tlw(led_off(0));
79 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror));
80 ttw(ttr(TTrInit, "} %d" NL, fs.initerror));
81 return fs.initerror;
82 }
83
84 // parse the fs options in the root inode's name
85 ip = inode_addr(fs.root);
86 fs_params_init(addr2name(offset2addr(location2offset(ip->location))));
87
88 if ((fs.initerror = journal_init(fs.ijournal)) == 0)
89 break;
90 }
91
92 // Init all file_descriptors to zero
93 memset(fs.fd, 0, sizeof(struct file_descriptor_s) * fs.fd_max);
94
95 // If blocks_fsck() found a block that needs cleaning, we do it, now
96 // that all the file system has been initialized.
97 if (b > 0) {
98 block_clean(b - 1);
99 block_free(b - 1);
100 }
101
102 statistics_init();
103
104 // In target, we do this before entering the task event loop...
105 // Otherwise we would in some cases impose a long reboot delay if we did
106 // it here. If we test in target it is nessesary to call
107 // blocks_reclaim() anyway because we re-init ffs.
108
109 #if (TARGET == 1) //NOTEME: can this be done in another/better way?
110 #if (WITH_TFFS == 1)
111 blocks_reclaim();
112 #endif
113 #else
114 blocks_reclaim();
115 #endif
116 tlw(led_off(LED_INIT));
117 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_OK));
118 ttw(str(TTrInit, "} 0" NL));
119
120 return EFFS_OK;
121 }
122
123 void fs_params_init(const char *p)
124 {
125 uint8 opt, digit;
126 uint32 n;
127 int numdatablocks;
128
129 tw(tr(TR_BEGIN, TrFsck, "fsparams_init('%s') {\n", p));
130
131 // Compiled default values
132 fs.filename_max = FFS_FILENAME_MAX;
133 fs.path_depth_max = FFS_PATH_DEPTH_MAX;
134 fs.fd_max = FFS_FD_MAX;
135 fs.journal_size = FFS_JOURNAL_SIZE_IN256THS;
136 fs.flags = 0;
137 fs.testflags = 0;
138
139 // Flag that it not has been changed by an input arg.
140 fs.block_files_max = 0;
141
142 // The default lost bytes percentage of a block before it is reclaimed
143 // is approx. 90%.
144 fs.lost_threshold = (256 - 256/10);
145
146 // If we only have two blocks, we cannot make any reclaims and thus we
147 // have a write-once FFS system.
148 fs.blocks_free_min = (dev.numblocks > 2 ? 1 : 0);
149
150 // Don't count free and inodes blocks
151 numdatablocks = dev.numblocks - fs.blocks_free_min - 1;
152
153 // Abselute max number of inodes.
154 fs.inodes_max = dev.blocksize / sizeof(struct inode_s);
155 if (fs.inodes_max > FFS_INODES_MAX)
156 fs.inodes_max = FFS_INODES_MAX;
157
158 // MUST be true: objects_max <= inodes_max - block_files_max, this is do
159 // to the fact that we always need to have block_files_max number of
160 // inodes left when we run a data reclaim.
161 fs.objects_max = fs.inodes_max / 2;
162
163 // Find a suitable chunk_size
164 if (dev.numblocks*dev.blocksize > 1024*1024)
165 fs.chunk_size_max = 8192;
166 else
167 fs.chunk_size_max = (2048 > (dev.blocksize / 8)
168 ? (dev.blocksize / 8)
169 : 2048);
170 fs.fd_buf_size = fs.chunk_size_max;
171
172 fs.journal_size = fs.journal_size * dev.blocksize / 256;
173 if (fs.journal_size < FFS_JOURNAL_SIZE_MIN)
174 fs.journal_size = FFS_JOURNAL_SIZE_MIN;
175
176 // Set it just below the same amount as entries in one journal file
177 fs.block_files_max = (fs.journal_size / sizeof(struct journal_s)
178 - FFS_JOURNAL_MARGIN - 2);
179
180 // MUST be true: block_files_max < objects_max / 2. But if we want
181 // to reach objects_max must block_files_max >= objects_max / number
182 // of datablocks, however a big block_files_max require higher
183 // reserved_space.
184 if (fs.block_files_max > fs.objects_max / 2)
185 fs.block_files_max = fs.objects_max / 2 - 4;
186
187 // Are we able to reach objects_max? If not then lower the number
188 if (fs.objects_max > numdatablocks * fs.block_files_max)
189 fs.objects_max = numdatablocks * fs.block_files_max + 10;
190
191 // Absolute minimum is RESERVED_LOW the rest is 'workspace' which is
192 // needed to have a reasonable performance.
193 fs.reserved_space = dev.blocksize / 2 +
194 numdatablocks * dev.blocksize / 16 + RESERVED_LOW;
195
196 // skip to first char following second slash in name
197 n = 0;
198 while (*p) {
199 if (*p++ == '/') {
200 n++;
201 if (n == 2)
202 break;
203 }
204 }
205 if (n == 2) {
206 // while still options to process...
207 while (*p) {
208 opt = *p++; // save option letter for later
209 // collect option value...
210 n = 0;
211 while ((digit = *p)) {
212 if (digit >= '0' && digit <= '9') {
213 n = 10 * n + digit - '0';
214 p++;
215 }
216 else
217 break;
218 }
219 switch (opt) {
220 case 'b': dev.numblocks = n; break;
221 case 'm': fs.blocks_free_min = n; break;
222 case 'i': fs.inodes_max = n; break;
223 case 'o': fs.objects_max = n; break;
224 case 'n': fs.filename_max = n; break;
225 case 'f': fs.block_files_max = n; break;
226 case 'd': fs.fd_max = n; break;
227 case 's': fs.fd_buf_size = n; break;
228 case 't': fs.lost_threshold = n; break;
229 case 'z': fs.flags = n; break;
230 case 'j': fs.journal_size = n; break;
231 case 'c': fs.chunk_size_max = n; break;
232 case 'r': fs.reserved_space = n; break;
233 // d = &fs.path_depth_max; // really necessary?
234 default:
235 break;
236 }
237 }
238 }
239
240 // Now recompute a few parameters based on adjusted values.
241
242 // No journal file thuse no reserved space.
243 if (fs.journal_size == 0) {
244 fs.block_files_max = fs.objects_max / 2;
245 fs.reserved_space = 0;
246 fs.block_files_reserved = 0;
247 }
248
249 else {
250 // If journal size is less than minimum must it have been changed by an
251 // input arg, recalculate.
252 if (fs.journal_size < FFS_JOURNAL_SIZE_MIN)
253 fs.journal_size = fs.journal_size * dev.blocksize / 256;
254
255 if (fs.reserved_space < RESERVED_LOW)
256 fs.reserved_space = fs.reserved_space * dev.blocksize / 256;
257
258 // Only one reserved is needed however we want a margin and set it to two
259 fs.block_files_reserved = 2;
260 }
261
262 // Don't count free blocks, inode block, reserved space, block headers
263 // and the size of one filename.
264 fs.filesize_max = numdatablocks * dev.blocksize - fs.reserved_space -
265 numdatablocks * BHEADER_SIZE - FFS_FILENAME_MAX;
266
267 // Furthermore don't count the overhead from each chunk (alignment)
268 fs.filesize_max -= ((fs.filesize_max / fs.chunk_size_max) * dev.atomsize
269 + dev.atomsize);
270
271 // NOTEME: chunk_size_min is never used
272 fs.chunk_size_min = numdatablocks / fs.objects_max;
273
274 tw(tr(TR_FUNC, TrFsck, "dev.numblocks = %d\n", dev.numblocks));
275 tw(tr(TR_FUNC, TrFsck, "fs.blocks_free_min = %d\n", fs.blocks_free_min));
276 tw(tr(TR_FUNC, TrFsck, "fs.inodes_max = %d\n", fs.inodes_max));
277 tw(tr(TR_FUNC, TrFsck, "fs.objects_max = %d\n", fs.objects_max));
278 tw(tr(TR_FUNC, TrFsck, "fs.block_files_max = %d\n", fs.block_files_max));
279 tw(tr(TR_FUNC, TrFsck, "fs.block_files_reserved = %d\n", fs.block_files_reserved));
280 tw(tr(TR_FUNC, TrFsck, "fs.chunk_size_max = %d\n", fs.chunk_size_max));
281 tw(tr(TR_FUNC, TrFsck, "fs.filename_max = %d\n", fs.filename_max));
282 tw(tr(TR_FUNC, TrFsck, "fs.lost_threshold = %d\n", fs.lost_threshold));
283 tw(tr(TR_FUNC, TrFsck, "fs.path_depth_max = %d\n", fs.path_depth_max));
284 tw(tr(TR_FUNC, TrFsck, "fs.journal_size = %d\n", fs.journal_size));
285 tw(tr(TR_FUNC, TrFsck, "fs.reserved_space = %d\n", fs.reserved_space));
286 tw(tr(TR_FUNC, TrFsck, "fs.fd_max = %d\n", fs.fd_max));
287 tw(tr(TR_FUNC, TrFsck, "fs.fd_buf_size = 0x%02x\n", fs.fd_buf_size));
288 tw(tr(TR_FUNC, TrFsck, "fs.flags = 0x%02x\n", fs.flags));
289 tw(tr(TR_END, TrFsck, "}\n"));
290 }
291
292 // TODO: Finish pending commits/writes.
293 effs_t ffs_exit(void)
294 {
295 tw(tr(TR_FUNC, TrFsck, "exit() 0\n"));
296
297
298 return EFFS_OK;
299 }
300
301 #if 0 // Not used in this version
302 // Purely for core internal use; Read a file.
303 effs_t file_read_int(const char *path, void *src, int size)
304 {
305 if (fs.initerror != EFFS_OK)
306 return fs.initerror;
307
308 return object_read(path, src, size, 0);
309 }
310
311 // Purely for core internal use; Update a file.
312 effs_t file_update(const char *path, void *src, int size)
313 {
314 char *name;
315 iref_t i, dir;
316
317 if (fs.initerror != EFFS_OK)
318 return fs.initerror;
319
320 if ((i = object_lookup(path, &name, &dir)) < 0)
321 return i;
322
323 journal_begin(i);
324
325 if ((i = object_create(name, src, size, -dir)) < 0)
326 return i;
327
328 journal_end(0);
329
330 return EFFS_OK;
331 }
332 #endif
333
334 /******************************************************************************
335 * blocks_fsck()
336 ******************************************************************************/
337
338 blocksize_t block_used(bref_t b)
339 {
340 blocksize_t used;
341 uint32 *p, *q;
342
343 tlw(led_toggle(LED_BLOCKS_FSCK));
344
345 // We search backwards through block to find the last used byte and
346 // thus the total number of used bytes. Note that this code depends
347 // on the fact that an erased flash location is 0xFF!
348 p = (uint32 *) offset2addr(dev.binfo[b].offset);
349 for (q = p + dev.blocksize/4 - 4; q > p; q -= 4) {
350 if ( ~(q[0] & q[1] & q[2] & q[3]) )
351 break;
352 }
353
354 if ( ~(q[0] & q[1] & q[2] & q[3]) )
355 q += 4;
356 used = atomalign((char *) q - (char *) p);
357
358 tw(tr(TR_FUNC, TrFsckLow, "ffs_block_used(%d) %d\n", b, used));
359
360 return used;
361 }
362
363
364 age_t age_distance(age_t x, age_t y)
365 {
366 age_t a = x - y;
367
368 if (a > 0x8000)
369 a = -a;
370
371 tw(tr(TR_FUNC, TrFsckLow, "age_distance(%d, %d) %d\n", x, y, a));
372
373 return a;
374 }
375
376 // For each ffs block, we initialise the basic bstat array information,
377 // namely the number of used bytes. Also, we locate the inodes block and if
378 // a previous operation was interrupted by a powerfail, we clean it up.
379 //
380 // We return EFFS_OK if all is fine. If a positive integer is returned, it
381 // denotes a block that needs to be cleaned by block_clean() once FFS
382 // has been properly intialized (we actually return the block number + 1
383 // because otherwise it would clash with EFFS_OK return code). If no inodes
384 // block is found or another error occurs, we return the error code.
385 bref_t blocks_fsck(void)
386 {
387 bref_t b, b_to_clean, b_inode_lost;
388 int age_valid;
389 age_t age_min, age_max, age_dist, age_dist_min, age_dist_max;
390 struct block_header_s *bhp;
391 struct block_header_old_s *obhp;
392
393 ttw(str(TTrInitLow, "blocks_fsck {" NL));
394 tw(tr(TR_BEGIN, TrFsck, "blocks_fsck() {\n"));
395
396 // initialize ages to the illegal/unset value
397 age_min = age_max = age_dist = 0;
398
399 fs.format = 0;
400 fs.inodes = -1;
401 fs.newinodes = -1;
402 b_inode_lost = -1;
403 b_to_clean = EFFS_OK;
404
405 for (b = 0; b < dev.numblocks; b++)
406 {
407 tlw(led_toggle(LED_DRV_INIT));
408
409 // read block flags from flash
410 bhp = (struct block_header_s *) offset2addr(dev.binfo[b].offset);
411 obhp = (struct block_header_old_s *) bhp;
412
413 bstat[b].used = dev.blocksize;
414 bstat[b].lost = bstat[b].used;
415 bstat[b].flags = bhp->flags;
416 bstat[b].objects = 0;
417
418 age_valid = 0;
419
420 if (bhp->magic_low != BLOCK_MAGIC_LOW ||
421 bhp->magic_high != BLOCK_MAGIC_HIGH) {
422 // The block magic as bad! It *could* be because the flash
423 // memory map is incorrect or because another application has
424 // spuriously written to the flash or ... who knows what. First
425 // we check to see if the reason is that we are dealing with a
426 // (really) old ffs format version.
427 if (obhp->magic_low == OLD_BLOCK_MAGIC_LOW &&
428 obhp->magic_high == OLD_FFS_FORMAT_VERSION) {
429 tw(tr(TR_FUNC, TrFsck, "OLD "));
430 fs.format = obhp->magic_high;
431 // We simulate that all the blocks are data blocks, in order
432 // to have some well-defined state that preformat() can work
433 // on. Later we will return EFFS_BADFORMAT and otherwise
434 // leave everything as it is, *without* modifying anything!
435 bstat[b].flags = BF_IS_DATA;
436 }
437 else {
438 // Quickly test if block is in empty state. We do not make a
439 // full check with block_used() because that takes too
440 // long --- we let preformat() do that.
441 if (bhp->magic_low == FLASH_NULL16 &&
442 bhp->magic_high == FLASH_NULL16 &&
443 bhp->age == FLASH_NULL16 &&
444 bhp->version == FLASH_NULL16 &&
445 bhp->flags == FLASH_NULL16)
446 {
447 bstat[b].used = 0;
448 bstat[b].lost = 0;
449 bstat[b].flags = BF_IS_EMPTY;
450 tw(tr(TR_FUNC, TrFsck, "EMPTY "));
451 }
452 else {
453 // If the block is not free, it is probably corrupted.
454 // Thus we reset its age and free it.
455 tw(tr(TR_FUNC, TrFsck, "magic = 0x%08x\n",
456 bhp->magic_low | (bhp->magic_high << 16)));
457 ffsdrv.write_halfword(&bhp->age, 0);
458 block_free(b);
459 tw(tr(TR_FUNC, TrFsck, "BAD "));
460 }
461 }
462 }
463 else {
464 fs.format = bhp->version;
465 age_valid = 1;
466
467 if (!is_block(b, BF_IS_FREE)) {
468 bstat[b].used = block_used(b);
469 bstat[b].lost = bstat[b].used - BHEADER_SIZE;
470 }
471
472 if (is_block(b, BF_IS_FREE)) {
473 // The only case where we do not call block_used() is
474 // when the block is truly free.
475 bstat[b].used = 0;
476 bstat[b].lost = 0;
477 tw(tr(TR_FUNC, TrFsck, "FREE "));
478 ttw(ttr(TTrInitLow, "FREE" NL));
479
480 }
481 else if (is_block(b, BF_IS_DATA)) {
482 tw(tr(TR_FUNC, TrFsck, "DATA "));
483 ttw(ttr(TTrInitLow, "DATA" NL));
484 }
485 else if (is_block(b, BF_IS_CLEANING)) {
486 // Here we schedule a block_clean(). Note that we can
487 // and do not execute the block cleaning now, as the info
488 // that block_clean() needs is not at all ready at this
489 // point in the initialization. So we set a flag and then
490 // clean the block at the end of ffs_initialize()
491 tw(tr(TR_FUNC, TrFsck, "CLEANING "));
492 ttw(ttr(TTrInitLow, "CLEANING" NL));
493 b_to_clean = b + 1;
494 }
495 else if (is_block(b, BF_IS_COPYING)) {
496 tw(tr(TR_FUNC, TrFsck, "COPYING "));
497 ttw(ttr(TTrInitLow, "COPYING" NL));
498 fs.newinodes = b;
499 }
500 else if (is_block(b, BF_IS_INODES)) {
501 tw(tr(TR_FUNC, TrFsck, "INODES "));
502 ttw(ttr(TTrInitLow, "INODES" NL));
503 fs.inodes = b;
504 }
505 else if (is_block(b, BF_IS_INODES_LOST)) {
506 tw(tr(TR_FUNC, TrFsck, "INODESLOST"));
507 ttw(ttr(TTrInitLow, "INODESLOST" NL));
508 b_inode_lost = b;
509 }
510 else {
511 block_free(b);
512 tw(tr(TR_FUNC, TrFsck, "INVALID "));
513 ttw(ttr(TTrInitLow, "INVALID" NL));
514 }
515 }
516
517 tw(tr(TR_NULL, TrFsck, " %2d: (0x%05x) %02x, used = %6d\n",
518 b, dev.binfo[b].offset, bstat[b].flags & 0xFF, bstat[b].used));
519
520 if (age_valid) {
521 if (age_min == 0) {
522 // Initialize minimum and maximum block ages
523 age_min = age_max = bhp->age;
524 tw(tr(TR_FUNC, TrFsckLow, "age_min/max = %d\n", age_min));
525 }
526 else {
527 age_dist_min = age_distance(bhp->age, age_min);
528 age_dist_max = age_distance(bhp->age, age_max);
529 if (age_dist_min > age_dist ||
530 age_dist_max > age_dist) {
531 if (age_dist_max > age_dist_min) {
532 age_dist = age_dist_max;
533 age_min = bhp->age;
534 tw(tr(TR_FUNC, TrFsckLow, "age_min = %d (dist = %d)\n",
535 age_min, age_dist));
536 }
537 else {
538 age_dist = age_dist_min;
539 age_max = bhp->age;
540 tw(tr(TR_FUNC, TrFsckLow, "age_max = %d (dist = %d)\n",
541 age_max, age_dist));
542 }
543 }
544 }
545 }
546 }
547 tlw(led_off(LED_DRV_INIT));
548 tw(tr(TR_FUNC, TrFsck, "age min, max, max-min = %d, %d, %d\n",
549 age_min, age_max, (uint16) (age_max-age_min)));
550 // If age_max is untouched is is because all blocks were in the 'Empty'
551 // state. In this case we let the age be as it is (0xFFFF).
552 if (age_max == 0)
553 age_max = age_min = BLOCK_AGE_MAX;
554
555 // Handle age wrap around thus ensuring fs.age_max is set correctly. We
556 // have to type-cast the whole computation, otherwise it will be
557 // incorrect.
558 if ((age_t) (age_max - age_min) > 0x8000) {
559 age_dist = age_max;
560 age_max = age_min;
561 age_min = age_dist;
562 }
563
564 // save maximum age found for the case of a bad block that is going to
565 // be reclaimed later on by blocks_reclaim()
566 fs.age_max = age_max;
567
568 tw(tr(TR_FUNC, TrFsck, "fs.format = 0x%04x\n", fs.format));
569 tw(tr(TR_FUNC, TrFsck, "fs.inodes, newinodes = %d, %d\n",
570 fs.inodes, fs.newinodes));
571 ttw(ttr(TTrInit, "fs.inodes, newinodes = %d, %d" NL,
572 fs.inodes, fs.newinodes));
573 tw(tr(TR_FUNC, TrFsck, "age min, max = %d, %d\n", age_min, age_max));
574
575 // If any blocks were in the EMPTY state, now is the time to bring them
576 // into the FREE state. Note that we must only do this *after*
577 // fs.age_max has been initialized.
578 for (b = 0; b < dev.numblocks; b++) {
579 if (is_block(b, BF_IS_EMPTY)) {
580 if ((bstat[b].used = block_used(b)) == 0)
581 block_preformat(b, 0);
582 else
583 block_free(b);
584 }
585 }
586
587 if (fs.inodes >= 0) {
588 // The 'old' inode block is still valid thus we keep it.
589 if (fs.newinodes >= 0)
590 // The copying of inodes to the new block was not finished thus
591 // we free the block
592 block_free(fs.newinodes);
593 inodes_set(fs.inodes);
594 }
595 else {
596 // Copying must have been finished
597 if (fs.newinodes >= 0 && b_inode_lost >= 0) {
598 // The inode reclaim did finish but currently there is no valid
599 // inode block thus the operation must be finished by committing
600 // the new block as the valid inode block.
601 fs.inodes = b_inode_lost;
602 block_commit();
603
604 }
605 else {
606 // No old or new Inode block!
607 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_NOFORMAT));
608 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_NOFORMAT));
609 return EFFS_NOFORMAT;
610 }
611 }
612
613 if ((fs.format >> 8) != (FFS_FORMAT_VERSION >> 8)) {
614 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_BADFORMAT));
615 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_BADFORMAT));
616 return EFFS_BADFORMAT;
617 }
618
619 // FIXME: Insert age sanity check; age distance must not be too big (> 2
620 // * FFS_AGE_DISTANCE)?
621
622 tw(tr(TR_END, TrFsck, "} %d\n", b_to_clean));
623 ttw(ttr(TTrInitLow, "} %d" NL, b_to_clean));
624
625 return b_to_clean;
626 }
627
628 // Set fs.inodes and fs.inodes_addr
629 void inodes_set(iref_t i)
630 {
631 fs.inodes = i;
632 fs.inodes_addr = (struct inode_s *)
633 (offset2addr(dev.binfo[fs.inodes].offset)
634 + dev.atomsize - sizeof(struct inode_s));
635 }
636
637
638 /******************************************************************************
639 * inodes_fsck()
640 ******************************************************************************/
641
642 // Now for each inode in the inodes block, update the bstat array
643 // information: free, used, objects. Also, locate the root inode. We could
644 // optimize this a little, because bstat[binodes].used gives an inidication
645 // of how many inodes are actually present in the system.
646 iref_t inodes_fsck(void)
647 {
648 iref_t i;
649 struct inode_s *ip;
650 char *addr;
651 bref_t block;
652
653 ttw(str(TTrInitLow, "inodes_fsck {" NL));
654 tw(tr(TR_BEGIN, TrFsck, "inodes_fsck() {\n"));
655 tw(tr(TR_FUNC, TrFsck, "inodes in block %d:\n", fs.inodes));
656
657 // the fields of the bstat entry for the inodes have the meaning:
658 // used = total number of used inodes (valid, erased, invalid)
659 // lost = total number of lost inodes (erased, invalid)
660 // objects = index of first free inode (used by inode_alloc())
661
662 fs.root = 0; // default to root inode not found
663 fs.ijournal = 0; // default to journal file inode not found
664 bstat[fs.inodes].objects = 1;
665 bstat[fs.inodes].used = 0;
666 bstat[fs.inodes].lost = 0;
667 fs.sequence = 0; // just for debug (fun)
668
669 // we must set some default value for this, so we set it to max possible!
670 fs.inodes_max = dev.blocksize / sizeof(struct inode_s);
671
672 ip = inode_addr(1);
673 tw(tr(TR_FUNC, TrFsck, " i addr cld sib seq upd flag size name\n"));
674 for (i = 1; i < fs.inodes_max; i++, ip++)
675 {
676 // just for debug (fun)
677 if (ip->sequence > fs.sequence)
678 fs.sequence = ip->sequence;
679
680 // compute block index and total data space occupied
681 block = offset2block(location2offset(ip->location));
682
683 // Only scan used inodes. blocks_fsck() accounted all used space as
684 // also being lost space, so now we subtract from the lost space,
685 // the space used by valid objects
686 if (ip->location != FLASH_NULL32)
687 {
688 bstat[fs.inodes].used++;
689
690 tw(tr(TR_FUNC, TrFsck, "%3d 0x%05X %3d %3d %4d %3d %s%s%s%s%s%s %6d %s\n",
691 i,
692 location2offset(ip->location),
693 ip->child, ip->sibling,
694 ip->sequence, ip->updates,
695 is_object(ip, OT_DIR) ? "d" : "",
696 is_object(ip, OT_LINK) ? "l" : "",
697 is_object(ip, OT_FILE) ? "f" : "",
698 is_object(ip, OT_SEGMENT) ? "s" : "",
699 is_object(ip, OT_ERASED) ? " " : "",
700 IS_BIT_SET(ip->flags, OF_READONLY) && !is_object(ip, OT_ERASED) ?
701 "r" : " ",
702 ip->size,
703 // Erased chunks do not have any name so we can not trace erased objects!
704 (ip->size && !is_object(ip, OT_SEGMENT) && !is_object(ip, OT_ERASED) ?
705 addr2name(offset2addr(location2offset(ip->location))) : "")
706 ));
707
708 if (is_object_valid(ip)) {
709 // This inode is valid, so we account the data space as used
710 // and the inode as used too.
711 bstat[block].lost -= ip->size;
712 bstat[block].objects++;
713 // test if this is the root inode. store index if it is.
714 if (!is_object(ip, OT_SEGMENT)) {
715 addr = addr2name(offset2addr(location2offset(ip->location)));
716 if (*addr == '/')
717 fs.root = i;
718 else if (*addr == '.' &&
719 ffs_strcmp(addr, FFS_JOURNAL_NAME) == 0) {
720 fs.ijournal = i;
721 }
722 }
723 }
724 else if (is_object(ip, OT_ERASED)) {
725 // this inode's data is deleted, so we account the data
726 // space as used and lost and the inode as lost too.
727 bstat[fs.inodes].lost++;
728 }
729 else {
730 // This is an invalid object, so we account the data space
731 // as used and lost and the inode as lost too. NOTEME: error
732 // what should we do? Perhaps we should record semi-lost
733 // inodes? Can we safely account for it here if this is an
734 // object to be recovered because another inode.copied is
735 // referring to this? Will used/lost etc. be updated
736 // correctly then?
737 bstat[fs.inodes].lost++;
738 tw(tr(TR_NULL, TrFsck, "(invalid = %d)\n", ip->flags & OT_MASK));
739 }
740 }
741 }
742 ttw(ttr(TTrInit, "fs.root=%d, journal=%d" NL, fs.root, fs.ijournal));
743 tw(tr(TR_END, TrFsck, "} used: %d, lost: %d, root: %d, journal: %d\n",
744 bstat[fs.inodes].used, bstat[fs.inodes].lost, fs.root, fs.ijournal));
745
746 fs.sequence++;
747
748 tw(tr_bstat());
749
750 if (fs.root == 0) {
751 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_NOFORMAT));
752 return EFFS_NOFORMAT;
753 }
754
755 ttw(str(TTrInitLow, "} 0" NL));
756
757 return EFFS_OK;
758 }
759
760
761 /******************************************************************************
762 * Preformat and format
763 ******************************************************************************/
764
765 // Prepare all blocks for fs_format(). Because ffs_is_formattable() has
766 // already been called prior to this function, we know that no sector erase
767 // is in progress! The blocks are prepared by putting them into the 'Free'
768 // state.
769 effs_t fs_preformat(void)
770 {
771 bref_t b;
772
773 ttw(str(TTrFormat, "preformat {" NL));
774 tw(tr(TR_BEGIN, TrFormat, "fs_preformat() {\n"));
775
776 // Mark ffs as being non-formatted from now on.
777 fs.root = 0;
778
779 // We must initialize bstat[fs.inodes].used and inodes_high, such that
780 // inodes_reclaim() isn't triggered in reclaim() on the following
781 // fs_format().
782 inodes_set(0);
783 bstat[fs.inodes].used = 0;
784 bstat[fs.inodes].lost = 0;
785 bstat[fs.inodes].objects = 0;
786
787 // While format is in progress, we make FFS inaccessible to other
788 // functions...
789 fs.initerror = EFFS_NOFORMAT;
790
791 if (dev.manufact == 0) {
792 b = EFFS_NODEVICE;
793 }
794 else {
795 for (b = 0; b < dev.numblocks; b++) {
796 if (is_block(b, BF_IS_EMPTY)) {
797 if ((bstat[b].used = block_used(b)) == 0)
798 block_preformat(b, 0);
799 else
800 block_free(b);
801 }
802 else if (!is_block(b, BF_IS_FREE)) {
803 block_free(b);
804 }
805 }
806 b = EFFS_OK;
807 }
808
809 tw(tr(TR_END, TrFormat, "} %d\n", b));
810 ttw(ttr(TTrFormat, "} %d" NL, b));
811
812 return b;
813 }
814
815 // Preformat a single block thus taking it from the 'Empty' state into
816 // 'Free' state.
817 void block_preformat(bref_t b, age_t age)
818 {
819 int set_age_max;
820 struct block_header_s *bhp =
821 (struct block_header_s *) offset2addr(dev.binfo[b].offset);
822
823 tw(tr(TR_BEGIN, TrFormat, "fs_block_preformat(%d, %d)\n", b, age));
824
825 if (age == 0) {
826 age = fs.age_max;
827 }
828 else {
829 // We schedule an update of fs.age_max. Due to proper handling of
830 // age wrap-around, we can not actually set it now.
831 set_age_max = (age == fs.age_max);
832 age++;
833 if (age == 0)
834 age++;
835 if (set_age_max) {
836 fs.age_max = age;
837 tw(tr(TR_FUNC, TrFormat, "new fs.age_max = %d\n", fs.age_max));
838 }
839 }
840
841 ffsdrv.write_halfword(&bhp->age, age);
842 ffsdrv.write_halfword(&bhp->version, FFS_FORMAT_VERSION);
843 ffsdrv.write_halfword(&bhp->magic_low, BLOCK_MAGIC_LOW);
844 ffsdrv.write_halfword(&bhp->magic_high, BLOCK_MAGIC_HIGH);
845
846 bstat[b].flags = BF_IS_EMPTY;
847 bstat[b].used = 0;
848 bstat[b].lost = 0;
849 bstat[b].objects = 0;
850
851 block_flags_write(b, BF_FREE);
852
853 tw(tr(TR_END, TrFormat, ""));
854 }
855
856 // After preformat() has erased two blocks, this function can be called to
857 // initialize ffs by writing fs data and metadata. Note that ffs_begin() is
858 // *not* called before this function in ffs.c. Otherwise we would never
859 // enter this function because fs.root is zero. NOTEME: this is also a bug
860 // as this means we risk that this operation is started while an erase (or a
861 // write) is in progress! How the flash device reacts to this is currently
862 // unknown.
863 effs_t fs_format(const char *name)
864 {
865 bref_t i, b;
866
867 ttw(str(TTrFormat, "format {" NL));
868 tw(tr(TR_BEGIN, TrFormat, "fs_format('%s') {\n", name));
869
870 // Initialize file system parameters. It should be safe to change these
871 // now, as the format cannot fail at this point onwards.
872 fs_params_init(name);
873
874 // Make the first block be the inodes block
875 if ((fs.inodes = block_alloc(1, BF_COPYING)) < 0)
876 return EFFS_AGAIN;
877 block_flags_write(fs.inodes, BF_INODES);
878 inodes_set(fs.inodes);
879
880 // Make all block as data blocks except from the free_min and inode block
881 for (i = 0; i < dev.numblocks - fs.blocks_free_min - 1; i++)
882 if ((b = block_alloc(0, BF_DATA)) < 0)
883 return EFFS_AGAIN;
884
885 // Restart object sequencing (debug feature only)
886 fs.sequence = 0;
887
888 // Create root directory
889 journal_begin(0);
890 if ((fs.root = object_create(name, 0, 0, 0)) < 0) {
891 tw(tr(TR_END, TrFormat, "} %d\n", fs.root));
892 return fs.root;
893 }
894 journal_commit(OT_DIR);
895
896 if ((fs.ijournal = journal_create(0)) < 0) {
897 tw(tr(TR_END, TrFormat, "} %d\n", fs.ijournal));
898 return fs.ijournal;
899 }
900
901 fs.initerror = ffs_initialize();
902
903 ttw(ttr(TTrFormat, "} %d" NL, fs.initerror));
904 tw(tr(TR_END, TrFormat, "} %d\n", fs.initerror));
905
906 return fs.initerror;
907 }
908
909 // Check if we are ready to preformat (flag = 0) or format (flag = 1)
910 //
911 // For a format, we must first ensure no blocks are valid e.g. a preformat
912 // has already been run. Next, we must ensure we have preformatted all
913 // blocks e.g. all blocks are in the 'Free' state. This is actually the same
914 // thing but it sure helps the user because it yields a more precise error
915 // code when the format fails. In future we might be able to start a format
916 // when only two blocks have been preformatted, but this is harder because
917 // we have to make sure not to read from the physical sector that we are
918 // erasing, and this is exactly what ffs_ffs_initialize() currently does
919 // (when it is called at the end of format()).
920 //
921 // For a preformat, we must ensure an erase is not in progress (because we
922 // don't know how the device will react to a new erase when an erase is
923 // currently suspended).
924 effs_t is_formattable(int8 flag)
925 {
926 bref_t i, free, valid;
927 effs_t error = EFFS_OK;
928
929 tw(tr(TR_FUNC, TrFormat, "is_formattable() "));
930
931 // Count the number of valid and free blocks. These numbers will later
932 // be checked to see if we are really ready for a (pre)format(). Note
933 // that we *only* read block flags from the bstat[] array. We must not
934 // read directly from the flash sectors because an erase might be in
935 // progress!
936 for (i = 0, free = 0, valid = 0; i < dev.numblocks; i++) {
937 if (is_block(i, BF_IS_DATA) || is_block(i, BF_IS_INODES))
938 valid++;
939 if (is_block(i, BF_IS_FREE))
940 free++;
941 }
942 if (flag == 0) {
943 // In the case of a preformat, ensure an erase is not in
944 // progress (because we don't know how the device will react to a new
945 // erase when an erase is currently suspended).
946 if (dev.state == DEV_ERASE || dev.state == DEV_ERASE_SUSPEND) {
947 tw(tr(TR_NULL, TrFormat, "(%d)\n", EFFS_AGAIN));
948 return EFFS_AGAIN;
949 }
950 }
951 else {
952 if (valid > 0)
953 // Ensure we have preformatted prior to a format.
954 error = EFFS_NOPREFORMAT;
955 else if (free < dev.numblocks)
956 // Ensure all blocks are free before a format(). If not, a
957 // preformat() is currently in progress.
958 error = EFFS_AGAIN;
959 }
960
961 tw(tr(TR_NULL, TrFormat, "(%d)\n", error));
962 return error;
963 }
964
965
966 /******************************************************************************
967 * Journalling
968 ******************************************************************************/
969
970 // The following matrix illustrates how the members of an inode change for
971 // the various (journalled) operations:
972 //
973 // | flags | size | loc | child | siblg | dir | oldi | updates
974 // ---------+-------+------+-----+-------+-------+-----+------+--------
975 // create | new | new | new | - | - | ins | n/a | 0
976 // fupdate | o | new | new | o | - | ins | del | old+1
977 // relocate | o | o | new | o | - | ins | del | old+1
978 // fctrl | new | o | o | o | - | ins | del | old+1
979 // remove | n/a | n/a | n/a | n/a | n/a | n/a | del | n/a
980 //
981 // - = leave empty (0xFFFF)
982 // ins = insert/append into directory
983 // o = old value
984 //
985 // We don't have to store child member in the journal entry because either
986 // it is EMPTY (fs.journal.oldi = 0) or it is retrieved from oldip->child.
987
988 // NOTEME: With journalling implemented, object_relocate might be able just
989 // to make a simple data copy!
990
991 // block_clean() is safe (without journalling), now that only ip->size is
992 // set to zero.
993
994 // Begin a new journal. Either a fresh object create (oldi == 0) or an
995 // update of an existing object (oldi == iref of old object)
996 void journal_begin(iref_t oldi)
997 {
998 tw(tr(TR_FUNC, TrJournal, "journal_begin(%d)\n", oldi));
999
1000 fs.journal.i = 0;
1001 fs.journal.state = JOURNAL_IS_EMPTY;
1002 fs.journal.repli = 0;
1003 fs.link_child = 1; //Default link child in journal_commit()
1004
1005 if (oldi == 0) {
1006 fs.journal.flags = 0xFF;
1007 fs.journal.diri = 0;
1008 fs.journal.oldi = 0;
1009 fs.journal.location = 0;
1010 fs.journal.size = 0;
1011 }
1012 else {
1013 struct inode_s *oldip = inode_addr(oldi);
1014 fs.journal.flags = oldip->flags;
1015 fs.journal.diri = oldi;
1016 fs.journal.oldi = oldi;
1017 fs.journal.location = oldip->location;
1018 fs.journal.size = oldip->size;
1019 }
1020 }
1021
1022 // NOTEME: We have compressed the macro code because it will NOT compile on
1023 // Unix otherwise. So until we find out why, we use this as a work-around.
1024 #if (FFS_TEST == 1)
1025 #define JOURNAL_TEST(testcase, text) if (fs.testflags == testcase) { tw(tr(TR_END, TrJournal, "} (" text ")\n")); return; }
1026 #else
1027 #define JOURNAL_TEST(testcase, text)
1028 #endif
1029
1030 // NOTEME: Should we empty journal file when we are anyway relocating it in
1031 // data_reclaim()?
1032 void journal_end(uint8 type)
1033 {
1034 struct inode_s *ip = inode_addr(fs.ijournal);
1035 struct journal_s *addr = (struct journal_s *)
1036 offset2addr(location2offset(ip->location) + fs.journal_pos);
1037
1038 tw(tr(TR_BEGIN, TrJournal, "journal_end(0x%x) {\n", type));
1039 tw(tr(TR_FUNC, TrJournal, "journal_pos = 0x%04x (%d)\n", fs.journal_pos,
1040 (fs.journal_pos - JOURNAL_POS_INITIAL) / sizeof(struct journal_s)));
1041
1042 // If this is a create, set the object type
1043 if (type != 0 && fs.journal.oldi == 0)
1044 fs.journal.flags = (fs.journal.flags & OF_MASK) | type;
1045
1046 // If there is no journal file, we can do without it, although we
1047 // certainly don't like it!
1048 if (fs.ijournal == 0) {
1049 journal_commit(0);
1050 tw(tr(TR_END, TrJournal, "} No jounal file\n"));
1051 return;
1052 }
1053
1054 JOURNAL_TEST(JOURNAL_TEST_EMPTY, "Oops in JOURNAL_IS_EMPTY");
1055
1056 // Write RAM journal to journal file.
1057 if (fs.journal.state == (uint8) JOURNAL_IS_EMPTY) {
1058 fs.journal.state = JOURNAL_IS_WRITING;
1059 ffsdrv.write(addr, &fs.journal, sizeof(fs.journal));
1060 }
1061
1062 JOURNAL_TEST(JOURNAL_TEST_WRITING, "Oops in JOURNAL_IS_WRITING");
1063
1064 // Advance journal file's state
1065 if (fs.journal.state == (uint8) JOURNAL_IS_WRITING) {
1066 fs.journal.state = JOURNAL_IS_READY;
1067 ffsdrv_write_byte(&addr->state, fs.journal.state);
1068 }
1069
1070 JOURNAL_TEST(JOURNAL_TEST_READY, "Oops in JOURNAL_IS_READY");
1071
1072 journal_commit(0);
1073
1074 JOURNAL_TEST(JOURNAL_TEST_COMMITTING, "Oops in JOURNAL_TEST_COMMITTING");
1075 JOURNAL_TEST(JOURNAL_TEST_COMMITTED, "Oops in JOURNAL_COMMITTED");
1076
1077 // Advance journal file's state
1078 ffsdrv_write_byte(&addr->state, JOURNAL_IS_DONE);
1079
1080 JOURNAL_TEST(JOURNAL_TEST_DONE, "Oops in JOURNAL_IS_DONE");
1081
1082 // Advance journal
1083 fs.journal_pos += sizeof(struct journal_s);
1084
1085 // Unless we are currently relocating the journal file itself, check if
1086 // journal file is near full and relocate it if it is.
1087 if (fs.journal_pos >= fs.journal_size - FFS_JOURNAL_MARGIN *
1088 sizeof(struct journal_s) && fs.journal.oldi != fs.ijournal) {
1089 tw(tr(TR_FUNC, TrJournal, "Journal file (near) full!\n"));
1090 journal_create(fs.ijournal);
1091 }
1092
1093 // Check if we have just committed the journal file itself
1094 if (fs.journal.oldi == fs.ijournal) {
1095 fs.journal_pos = JOURNAL_POS_INITIAL;
1096 fs.ijournal = fs.journal.i;
1097 tw(tr(TR_FUNC, TrJournal, "Journal file re-created, fs.ijournal = %d\n",
1098 fs.ijournal));
1099 }
1100 tw(tr(TR_END, TrJournal, "}\n"));
1101 }
1102
1103 // Write contents of fs.journal to FFS meta data (inodes). Note that we do
1104 // NOT traverse ip->copied as we used to do in the old
1105 // object_update_commit(). Also, we do not check if object has been
1106 // erased after traversing ip->copied. All this code has been removed
1107 // because we will very soon have full callback functionality and thus the
1108 // code is redundant.
1109 void journal_commit(uint8 type)
1110 {
1111 struct inode_s *ip = inode_addr(fs.journal.i);
1112 struct inode_s *oldip = inode_addr(fs.journal.oldi);
1113 struct inode_s *dp;
1114 bref_t b;
1115
1116 tw(tr(TR_BEGIN, TrJournal, "journal_commit(%d) {\n", type));
1117 tw(tr(TR_FUNC, TrJournal, "i = %d\n", fs.journal.i));
1118 ttw(ttr(TTrObj, "jc(){" NL));
1119
1120 if (fs.journal.i)
1121 {
1122 // If this is a create, set the object type
1123 if (type != 0 && fs.journal.oldi == 0)
1124 fs.journal.flags = (fs.journal.flags & OF_MASK) | type;
1125
1126 tw(tr(TR_FUNC, TrJournal, "loc = 0x%04x, size = %d\n",
1127 fs.journal.location, fs.journal.size));
1128 ffsdrv.write((uint32 *) &ip->location, (uint32 *) &fs.journal.location, sizeof(location_t));
1129 ffsdrv.write_halfword((uint16 *) &ip->size, fs.journal.size);
1130
1131 if (fs.journal.oldi != 0 && fs.link_child != 0)
1132 // If this is an update, we copy the child member from old
1133 // inode. We must do this before we validate the new object,
1134 // otherwise an intermediate readdir() will detect an empty
1135 // directory!
1136 ffsdrv.write_halfword((uint16*) &ip->child, oldip->child);
1137
1138 tw(tr(TR_FUNC, TrJournal, "seq = %d\n", fs.sequence));
1139 // We must check if sequence is already written because if this
1140 // commit was inititiated by journal_init(), we don't know exactly
1141 // what was written
1142 if (ip->sequence == FLASH_NULL16)
1143 ffsdrv.write_halfword(&ip->sequence, fs.sequence++);
1144 if (fs.journal.oldi == 0)
1145 ffsdrv.write_halfword(&ip->updates, 0);
1146 else
1147 ffsdrv.write_halfword(&ip->updates, oldip->updates + 1);
1148
1149 JOURNAL_TEST(JOURNAL_TEST_COMMITTING, "Oops in JOURNAL_TEST_COMMITTING")
1150
1151 // Insert object into directory structure. We must do this before
1152 // deleting old object, otherwise an intermediate readdir() will
1153 // fail with EFFS_NOTFOUND. Note that when the root directory is
1154 // created, fs.journal.diri is zero --- thus the test!
1155 if (fs.journal.diri != 0) {
1156 tw(tr(TR_FUNC, TrJournal, "diri = %d ", fs.journal.diri));
1157 if (fs.journal.diri < 0) {
1158 tw(tr(TR_NULL, TrJournal, "child\n"));
1159 dp = inode_addr(-fs.journal.diri);
1160 ffsdrv.write_halfword((uint16 *) &dp->child, fs.journal.i);
1161 }
1162 else {
1163 tw(tr(TR_NULL, TrJournal, "sibling\n"));
1164 dp = inode_addr(fs.journal.diri);
1165 ffsdrv.write_halfword((uint16 *) &dp->sibling, fs.journal.i);
1166 }
1167 }
1168
1169 // The new object is validated before the old object is deleted.
1170 // This is in order to avoid an interrupting stat or read operation
1171 // to fail with EFFS_NOTFOUND
1172 tw(tr(TR_FUNC, TrJournal, "flags = 0x%02x\n", fs.journal.flags));
1173 ffsdrv_write_byte(&ip->flags, fs.journal.flags);
1174
1175 // Update bstat[] appropriately
1176 b = offset2block(location2offset(ip->location));
1177 bstat[b].objects++;
1178 tw(tr(TR_FUNC, TrJournal, "bstat[%d].objects = %d\n", b, bstat[b].objects));
1179 }
1180
1181 tw(tr(TR_FUNC, TrJournal, "oldi = %d\n", fs.journal.oldi));
1182 if (fs.journal.oldi != 0)
1183 {
1184 // If this is an update or an erase, we erase the old object
1185 ffsdrv_write_byte(&oldip->flags, OT_ERASED);
1186
1187 // Update bstat according to deletion of the old object.
1188 b = offset2block(location2offset(oldip->location));
1189 bstat[b].objects--;
1190 tw(tr(TR_FUNC, TrJournal, "bstat[%d].objects = %d\n", b, bstat[b].objects));
1191
1192 // If we moved the data (all cases, except fcontrol), update lost
1193 if (fs.journal.location != oldip->location)
1194 bstat[b].lost += oldip->size;
1195
1196 bstat[fs.inodes].lost++;
1197
1198 // If we renamed a file to an existing filename, remove the replaced file.
1199 if (fs.journal.repli > 0)
1200 object_remove(fs.journal.repli); // Ignore error!
1201 }
1202
1203 tw(tr(TR_END, TrJournal, "}\n"));
1204 ttw(ttr(TTrObj, "}" NL));
1205 }
1206
1207 // Save the current journal into "old" journal. We need this because an
1208 // object_create() can call data_reclaim() which can call object_relocate()
1209 // which uses the journal system.
1210 int journal_push(void)
1211 {
1212 memcpy(&fs.ojournal, &fs.journal, sizeof(struct journal_s));
1213 fs.journal_depth++;
1214 if (fs.journal_depth > 1) {
1215 tw(tr(TR_FUNC, TrAll, "FATAL: journal_push() to depth %d\n",
1216 fs.journal_depth));
1217 return -1;
1218 }
1219
1220 tw(tr(TR_FUNC, TrJournal, "journal_push() to depth %d\n",
1221 fs.journal_depth));
1222
1223 return EFFS_OK;
1224 }
1225
1226 // Recall "old" journal into current journal
1227 int journal_pop(void)
1228 {
1229 tw(tr(TR_FUNC, TrJournal, "journal_pop() from depth %d\n",
1230 fs.journal_depth));
1231
1232 fs.journal_depth--;
1233 if (fs.journal_depth < 0) {
1234 tw(tr(TR_FUNC, TrAll, "FATAL: journal_pop() to depth %d\n",
1235 fs.journal_depth));
1236 return -1;
1237 }
1238 memcpy(&fs.journal, &fs.ojournal, sizeof(struct journal_s));
1239
1240 return EFFS_OK;
1241 }
1242
1243 // Initialize the journalling system. Create journal file if it not already
1244 // exist. Commit/write pending journal if such exists --- return 1 in that
1245 // case. Otherwise, if journal file is clean (no journals pending) and all
1246 // is fine, return EFFS_OK.
1247 effs_t journal_init(iref_t i)
1248 {
1249 int j;
1250 struct inode_s *ip = inode_addr(i);
1251 struct journal_s *addr;
1252
1253 if (i == 0) {
1254 // Journal file does not exist, so create it
1255 if ((i = journal_create(0)) <= 0) {
1256 fs.ijournal = 0;
1257 return i;
1258 }
1259 }
1260
1261 fs.journal_depth = 0;
1262 fs.journal_pos = JOURNAL_POS_INITIAL;
1263
1264 addr = (struct journal_s *)
1265 offset2addr(location2offset(ip->location) + fs.journal_pos);
1266
1267 tw(tr(TR_BEGIN, TrJournal, "journal_init(%d) {\n", i));
1268
1269 fs.ijournal = i;
1270
1271 // Search for first non-completed journal entry.
1272 for (j = 0; /* FIXME: limit to end of journal */; j++, addr++) {
1273 if (addr->state != (uint8) JOURNAL_IS_DONE)
1274 break;
1275 }
1276 tw(tr(TR_FUNC, TrJournal, "entry %d is in state 0x%x\n", j, addr->state));
1277
1278 fs.journal_pos += j * sizeof(fs.journal);
1279 i = EFFS_OK;
1280
1281 if (addr->state == (uint8) JOURNAL_IS_EMPTY) {
1282 tw(tr(TR_FUNC, TrJournal, "Last journal is in EMPTY state\n"));
1283 // Journal file is proper, so just record position
1284 }
1285 else if (addr->state == (uint8) JOURNAL_IS_READY) {
1286 // Copy the entry into fs.journal.
1287 tw(tr(TR_FUNC, TrJournal, "Last journal is in READY state\n"));
1288 memcpy(&fs.journal, addr, sizeof(fs.journal));
1289 journal_end(0);
1290 i = 1;
1291 }
1292 else {
1293 // Journal entry wasn't finished, so just ignore it after updating
1294 // its state to JOURNAL_IS_DONE.
1295 tw(tr(TR_FUNC, TrJournal, "Last journal is between EMPTY and READY\n"));
1296 ffsdrv_write_byte(&addr->state, JOURNAL_IS_DONE);
1297 fs.journal_pos += sizeof(fs.journal);
1298 }
1299
1300 if (ip->size != fs.journal_size + atomalign(sizeof(FFS_JOURNAL_NAME) + 1)) {
1301 tw(tr(TR_FUNC, TrJournal, "Wrong journal size, create new\n"));
1302 // Journal size do not match default size, so create new. This
1303 // should only happen if we use an old FFS image with a newer FFS
1304 // version.
1305 if ((i = journal_create(fs.ijournal)) <= 0) {
1306 fs.ijournal = 0;
1307 return i;
1308 }
1309 }
1310
1311 tw(tr(TR_FUNC, TrJournal, "journal_pos = 0x%04x\n", fs.journal_pos));
1312 tw(tr(TR_END, TrJournal, "} %d\n", i));
1313
1314 return i;
1315 }
1316
1317 // Create the journal file from scratch or relocate an existing one. It is
1318 // marked read-only just for clarity --- it cannot be deleted anyway!
1319 // fs_format() calls this function. Note that no data are written in
1320 // object_create() because the journal file is handled specially in that
1321 // function.
1322 iref_t journal_create(iref_t oldi)
1323 {
1324 iref_t i;
1325
1326 tw(tr(TR_BEGIN, TrJournal, "journal_create(%d) {\n", oldi));
1327 tw(tr(TR_FUNC, TrJournal, "journal file size = %d\n", fs.journal_size));
1328
1329 if (fs.journal_size == 0) {
1330 tw(tr(TR_FUNC, TrJournal, "Journal file creation aborted because fs.journal_size = 0 (No journal file wanted)\n"));
1331 tw(tr(TR_END, TrJournal, "} %d\n", 0));
1332 return 0;
1333 }
1334
1335 // If we are working on a write-once file system, we do not need a
1336 // journal.
1337 if (fs.blocks_free_min == 0) {
1338 tw(tr(TR_FUNC, TrJournal, "Journal file creation aborted because fs.blocks_free_min = 0 (write-once system)\n"));
1339 tw(tr(TR_END, TrJournal, "} %d\n", 0));
1340 return 0;
1341 }
1342
1343 journal_begin(oldi);
1344
1345 i = object_create(FFS_JOURNAL_NAME, 0, fs.journal_size, -fs.root);
1346 if (i < 0) {
1347 tw(tr(TR_END, TrJournal, "} %d\n", i));
1348 return i;
1349 }
1350 fs.journal.flags = BIT_SET(fs.journal.flags, OF_READONLY);
1351
1352 // commit the creation or relocation
1353 if (oldi != 0)
1354 journal_end(0);
1355 else {
1356 journal_commit(OT_FILE);
1357 fs.journal_pos = JOURNAL_POS_INITIAL;
1358 }
1359
1360 tw(tr(TR_END, TrJournal, "} %d\n", i));
1361
1362 return i;
1363 }
1364
1365 /******************************************************************************
1366 * FFS Begin and End
1367 ******************************************************************************/
1368
1369 // The following two functions should surround the code of every API
1370 // function in ffs.c (except preformat and format). The functions
1371 // ensures that the operation about to be executed can be made without
1372 // race-conditions or other problems.
1373 #if (TARGET == 0)
1374 int debug_suspend = 0;
1375 #endif
1376
1377
1378 // Check if ffs has been initialized. Suspend an erase operation.
1379 effs_t ffs_begin(void)
1380 {
1381 #if (TARGET == 0)
1382 if (debug_suspend > 0) {
1383 tw(tr(TR_FUNC, TrAll, "FATAL: Previous erase_suspend was not resumed\n"));
1384 return EFFS_CORRUPTED;
1385 }
1386 // tw(tr(TR_FUNC, TrHelper, "Set debug_suspend\n"));
1387 debug_suspend = 1;
1388 #endif
1389
1390 if (fs.initerror != EFFS_OK)
1391 return fs.initerror;
1392
1393 // Suspend an erase in progress (only applicable if we are using a
1394 // multi-bank device driver)
1395 if (dev.state == DEV_ERASE) {
1396 ffsdrv.erase_suspend();
1397 }
1398 else if (dev.state == DEV_WRITE) {
1399 ffsdrv.write_end();
1400 }
1401
1402 return EFFS_OK;
1403 }
1404
1405 // Resume an erase operation that was in progress.
1406 int ffs_end(int error)
1407 {
1408 #if (TARGET == 1)
1409 // Resume an erase in progress (only applicable if we are using a
1410 // multi-bank device driver)
1411 if (dev.state == DEV_ERASE_SUSPEND) {
1412 ffsdrv.erase_resume();
1413 }
1414 #else
1415 debug_suspend = 0;
1416 #endif
1417
1418 return error;
1419 }
1420
1421 /******************************************************************************
1422 * FFS Statistics functions
1423 ******************************************************************************/
1424
1425 // Not implemented:
1426 int statistics_file_create(void)
1427 {
1428 return 0;
1429 }
1430
1431 // Not implemented:
1432 // Rewrite the statistics file if it exists. Otherwise return error
1433 // code. The function is called after each data and inodes reclaim (after
1434 // writing the file that provoked the reclaim).
1435 int statistics_write(void)
1436 {
1437 return 0;
1438 }
1439
1440 // Read the statistics file if it exists. Otherwise reset all statistics to
1441 // zero and set the magic. This function is called from ffs_init().
1442 void statistics_init(void)
1443 {
1444 memset(&stats, 0, sizeof(struct ffs_stats_s));
1445 }
1446
1447 void statistics_update_drec(int valid, int lost, int candidate)
1448 {
1449 unsigned int old;
1450
1451 switch (candidate) {
1452 case MOST_LOST: stats.drec.most_lost++; break;
1453 case MOST_UNUSED: stats.drec.most_unused++; break;
1454 case YOUNGEST: stats.drec.youngest++; break;
1455 }
1456
1457 // Increment Most Significant Word if overflow is detected
1458 old = stats.drec.valid[0];
1459 stats.drec.valid[0] += valid;
1460 if (old > stats.drec.valid[0])
1461 stats.drec.valid[1]++;
1462
1463 old = stats.drec.lost[0];
1464 stats.drec.lost[0] += lost;
1465 if (old > stats.drec.lost[0])
1466 stats.drec.lost[1]++;
1467 }
1468
1469 void statistics_update_irec(int valid, int lost)
1470 {
1471 stats.irec.num++;
1472 stats.irec.valid += valid;
1473 stats.irec.lost += lost;
1474 }
1475