FreeCalypso > hg > tcs211-l1-reconst
comparison chipsetsw/drivers/drv_app/uart/uartfax.c @ 0:509db1a7b7b8
initial import: leo2moko-r1
author | Space Falcon <falcon@ivan.Harhan.ORG> |
---|---|
date | Mon, 01 Jun 2015 03:24:05 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:509db1a7b7b8 |
---|---|
1 /******************************************************************************* | |
2 * | |
3 * UARTFAX.C | |
4 * | |
5 * This driver allows to control the UARTs of chipset 1.5 for fax and data | |
6 * services. It performs flow control: RTS/CTS, XON/XOFF. | |
7 * | |
8 * On C & D-Sample, DCD and DTR signals are supported on UART modem only with 2 | |
9 * I/Os. | |
10 * | |
11 * On E-Sample, DCD and DTR signals are directly handled by Calypso+. | |
12 * | |
13 * On Calypso, RTS and CTS are supported on both UARTs. | |
14 * | |
15 * On Calypso+, RTS and CTS are supported on UART Modem1 & IrDA. UART Modem2 is | |
16 * not available through DB9 connector on E-Sample. | |
17 * | |
18 * (C) Texas Instruments 1999 - 2003 | |
19 * | |
20 ******************************************************************************/ | |
21 | |
22 /* | |
23 * E-Sample | |
24 * | |
25 * UART Modem1 UART Irda | |
26 * | |
27 * DB9 Calypso+ DB9 Calypso+ | |
28 * | |
29 * 1 DCD DCD output 1 1, 6 and 4 are connected together on DB9 | |
30 * 2 RX TX output 2 RX TX2 output | |
31 * 3 TX RX input 3 TX RX2 input | |
32 * 4 DTR DSR input 4 | |
33 * 5 GND 5 GND | |
34 * 6 NC 6 | |
35 * 7 RTS CTS input 7 RTS CTS2 input | |
36 * 8 CTS RTS output 8 CTS RTS2 output | |
37 * 9 NC 9 NC | |
38 * | |
39 */ | |
40 | |
41 /* | |
42 * C & D-Sample | |
43 * | |
44 * UART Modem UART Irda | |
45 * | |
46 * DB9 Calypso DB9 Calypso | |
47 * | |
48 * 1 DCD I/O 2 output 1 1, 6 and 4 are connected together on DB9 | |
49 * 2 RX TX output 2 RX TX2 output | |
50 * 3 TX RX input 3 TX RX2 input | |
51 * 4 DTR I/O 3 input 4 | |
52 * 5 GND 5 GND | |
53 * 6 NC 6 | |
54 * 7 RTS CTS input 7 RTS CTS2 input | |
55 * 8 CTS RTS output 8 CTS RTS2 output | |
56 * 9 NC 9 NC | |
57 * | |
58 */ | |
59 | |
60 /* | |
61 * B-Sample | |
62 * | |
63 * UART Modem UART Irda | |
64 * | |
65 * DB9 Ulysse DB9 Ulysse | |
66 * | |
67 * 1 1, 6 and 4 are connected together on DB9 (Modem and Irda) | |
68 * 2 RX TX 2 RX TX | |
69 * 3 TX RX 3 TX RX | |
70 * 4 4 | |
71 * 5 GND 5 GND | |
72 * 6 6 | |
73 * 7 RTS CTS 7 7 and 8 are connected together on DB9 | |
74 * 8 CTS RTS 8 | |
75 * 9 NC 9 NC | |
76 * | |
77 */ | |
78 | |
79 #include "swconfig.cfg" | |
80 | |
81 #include "l1sw.cfg" | |
82 | |
83 #if (OP_L1_STANDALONE == 0) | |
84 #include "rv.cfg" | |
85 #endif | |
86 #include "board.cfg" | |
87 #include "chipset.cfg" | |
88 #ifdef BLUETOOTH_INCLUDED | |
89 #include "btemobile.cfg" | |
90 #endif | |
91 | |
92 | |
93 #include <string.h> | |
94 #include "nucleus.h" | |
95 | |
96 #include "main/sys_types.h" | |
97 #include "faxdata.h" | |
98 #include "uartfax.h" | |
99 | |
100 /* | |
101 * Needed to reset and restart the sleep timer in case of incoming characters. | |
102 */ | |
103 | |
104 #include "serialswitch.h" | |
105 extern SYS_BOOL uart_sleep_timer_enabled; | |
106 | |
107 /* | |
108 * rv_general.h is needed for macros Min & Min3. | |
109 */ | |
110 | |
111 #include "rv/rv_general.h" | |
112 | |
113 #include "memif/mem.h" | |
114 | |
115 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
116 #include "armio/armio.h" | |
117 #endif | |
118 | |
119 /* | |
120 * Maximal value for an unsigned 32 bits. | |
121 */ | |
122 | |
123 #define MAX_UNSIGNED_32 (4294967295) | |
124 | |
125 #define FIFO_SIZE (64) /* In bytes. */ | |
126 | |
127 | |
128 /* | |
129 * TLR is used to program the RX FIFO trigger levels. FCR[7:4] are not used. | |
130 * No trigger level used for TX FIFO. THR_IT generated on TX FIFO empty. | |
131 */ | |
132 | |
133 #define RX_FIFO_TRIGGER_LEVEL (12 << 4) | |
134 | |
135 | |
136 /* | |
137 * 16750 addresses. Registers accessed when LCR[7] = 0. | |
138 */ | |
139 | |
140 #define RHR (0x00) /* Rx buffer register - Read access */ | |
141 #define THR (0x00) /* Tx holding register - Write access */ | |
142 #define IER (0x01) /* Interrupt enable register */ | |
143 | |
144 /* | |
145 * 16750 addresses. Registers accessed when LCR[7] = 1. | |
146 */ | |
147 | |
148 #define DLL (0x00) /* Divisor latch (LSB) */ | |
149 #define DLM (0x01) /* Divisor latch (MSB) */ | |
150 | |
151 | |
152 /* | |
153 * EFR is accessed when LCR[7:0] = 0xBF. | |
154 */ | |
155 | |
156 #define EFR (0x02) /* Enhanced feature register */ | |
157 | |
158 | |
159 /* | |
160 * 16750 addresses. Bit 5 of the FCR register is accessed when LCR[7] = 1. | |
161 */ | |
162 | |
163 #define IIR (0x02) /* Interrupt ident. register - Read only */ | |
164 #define FCR (0x02) /* FIFO control register - Write only */ | |
165 #define LCR (0x03) /* Line control register */ | |
166 #define MCR (0x04) /* Modem control register */ | |
167 #define LSR (0x05) /* Line status register */ | |
168 #define MSR (0x06) /* Modem status register */ | |
169 #define TCR (0x06) /* Transmission control register */ | |
170 #define TLR (0x07) /* Trigger level register */ | |
171 #define MDR1 (0x08) /* Mode definition register 1 */ | |
172 #define SCR (0x10) /* Supplementary Control register */ | |
173 #define SSR (0x11) /* Supplementary Status register */ | |
174 #define UASR (0x0E) /* Autobauding Status register */ | |
175 | |
176 /* | |
177 * Supplementary control register. | |
178 */ | |
179 | |
180 #define TX_EMPTY_CTL_IT (0x08) | |
181 #define RX_CTS_WAKE_UP_ENABLE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
182 #define DSR_IT_BIT (5) /* Use RESET_BIT and SET_BIT macros. */ | |
183 | |
184 /* | |
185 * Enhanced feature register. | |
186 */ | |
187 | |
188 #define ENHANCED_FEATURE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
189 #define AUTO_CTS_BIT (7) /* Transmission is halted when the CTS pin is high (inactive). */ | |
190 | |
191 /* | |
192 * Mode definition register 1. | |
193 */ | |
194 | |
195 #define UART_MODE (0x00) | |
196 #define SIR_MODE (0x01) | |
197 #define UART_MODE_AUTOBAUDING (0x02) /* Reserved in UART/IrDA. */ | |
198 #define RESET_DEFAULT_STATE (0x07) | |
199 #define IR_SLEEP_DISABLED (0x00) | |
200 #define IR_SLEEP_ENABLED (0x08) | |
201 #define SIR_TX_WITHOUT_ACREG2 (0x00) /* Reserved in UART/modem. */ | |
202 #define SIR_TX_WITH_ACREG2 (0x20) /* Reserved in UART/modem. */ | |
203 #define FRAME_LENGTH_METHOD (0x00) /* Reserved in UART/modem. */ | |
204 #define EOT_BIT_METHOD (0x80) /* Reserved in UART/modem. */ | |
205 | |
206 /* | |
207 * Supplementary Status Register | |
208 */ | |
209 | |
210 #define TX_FIFO_FULL (0x01) | |
211 | |
212 | |
213 /* | |
214 * Interrupt enable register. | |
215 */ | |
216 | |
217 #define ERBI (0x01) /* Enable received data available interrupt */ | |
218 #define ETBEI (0x02) /* Enable transmitter holding register empty interrupt */ | |
219 #define ELSI (0x04) /* Enable receiver line status interrupt */ | |
220 #define EDSSI (0x08) /* Enable modem status interrupt */ | |
221 #define IER_SLEEP (0x10) /* Enable sleep mode */ | |
222 | |
223 /* | |
224 * Modem control register. | |
225 */ | |
226 | |
227 #define MDCD (0x01) /* Data Carrier Detect. */ | |
228 #define MRTS (0x02) /* Request To Send. */ | |
229 #define TCR_TLR_BIT (6) | |
230 | |
231 /* | |
232 * Line status register. | |
233 */ | |
234 | |
235 #define DR (0x01) /* Data ready */ | |
236 #define OE (0x02) /* Overrun error */ | |
237 #define PE (0x04) /* Parity error */ | |
238 #define FE (0x08) /* Framing error */ | |
239 #define BI (0x10) /* Break interrupt */ | |
240 #define THRE (0x20) /* Transmitter holding register (FIFO empty) */ | |
241 #define TEMT (0x40) /* Transmitter empty (FIFO and TSR both empty) */ | |
242 | |
243 #define BYTE_ERROR (OE | PE | FE | BI) | |
244 | |
245 /* | |
246 * Interrupt identification register. | |
247 * Bit 0 is set to 0 if an IT is pending. | |
248 * Bits 1 and 2 are used to identify the IT. | |
249 */ | |
250 | |
251 #define IIR_BITS_USED (0x07) | |
252 #define IT_PENDING (0x01) | |
253 #define RX_DATA (0x04) | |
254 #define TX_EMPTY (0x02) | |
255 #define MODEM_STATUS (0x00) | |
256 | |
257 /* | |
258 * Modem status register. | |
259 */ | |
260 | |
261 #define DELTA_CTS (0x01) | |
262 #define DELTA_DSR (0x02) | |
263 #define MCTS (0x10) /* Clear to send */ | |
264 #define MDSR (0x20) /* Data set ready */ | |
265 | |
266 /* | |
267 * Line control register. | |
268 */ | |
269 | |
270 #define WLS_5 (0x00) /* Word length: 5 bits */ | |
271 #define WLS_6 (0x01) /* Word length: 6 bits */ | |
272 #define WLS_7 (0x02) /* Word length: 7 bits */ | |
273 #define WLS_8 (0x03) /* Word length: 8 bits */ | |
274 #define STB (0x04) /* Number of stop bits: 0: 1, 1: 1,5 or 2 */ | |
275 #define PEN (0x08) /* Parity enable */ | |
276 #define EPS (0x10) /* Even parity select */ | |
277 #define BREAK_CONTROL (0x40) /* Enable a break condition */ | |
278 #define DLAB (0x80) /* Divisor latch access bit */ | |
279 | |
280 /* | |
281 * FIFO control register. | |
282 */ | |
283 | |
284 #define FIFO_ENABLE (0x01) | |
285 #define RX_FIFO_RESET (0x02) | |
286 #define TX_FIFO_RESET (0x04) | |
287 | |
288 /* | |
289 * These constants define the states of the escape sequence detection. | |
290 */ | |
291 | |
292 #define INITIALIZATION (0) | |
293 #define NO_ESCAPE_SEQUENCE (1) | |
294 #define ONE_CHAR_DETECTED (2) | |
295 #define TWO_CHARS_DETECTED (3) | |
296 #define THREE_CHARS_DETECTED (4) | |
297 | |
298 #define CHARACTERS_IN_ESC_SEQ (3) | |
299 #define DEFAULT_ESC_SEQ_CHARACTER '+' | |
300 #define DEFAULT_GUARD_PERIOD (1000) /* 1 second. */ | |
301 | |
302 /* | |
303 * 3 HISR are used to avoid to execute operations from the LISR. | |
304 */ | |
305 | |
306 #define RX_HISR_PRIORITY (2) | |
307 | |
308 | |
309 | |
310 | |
311 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
312 //#define RX_HISR_STACK_SIZE (512) /* Bytes. */ | |
313 #define RX_HISR_STACK_SIZE (768) /* Bytes. */ | |
314 | |
315 | |
316 | |
317 | |
318 #define TX_HISR_PRIORITY (2) | |
319 | |
320 | |
321 | |
322 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
323 //#define TX_HISR_STACK_SIZE (512) /* Bytes. */ | |
324 #define TX_HISR_STACK_SIZE (768) /* Bytes. */ | |
325 | |
326 | |
327 | |
328 | |
329 #define V24_HISR_PRIORITY (2) | |
330 #define V24_HISR_STACK_SIZE (512) /* Bytes. */ | |
331 | |
332 /* | |
333 * When the break interrupt indicator (BI) is set in the line status register | |
334 * (LSR), it indicates that the received data input was held in the low state | |
335 * for longer than a full-word transmission time. In the FIFO mode, when a break | |
336 * occurs, only one 0 character is loaded into the FIFO. The next character | |
337 * transfer is enabled after SIN goes to the marking state for at least two RCLK | |
338 * samples and then receives the next valid start bit. | |
339 * This constant defined a defined break length returned by the US_GetLineState | |
340 * function. | |
341 */ | |
342 | |
343 #define MINIMAL_BREAK_LENGTH (2) | |
344 | |
345 #define BREAK_HISR_PRIORITY (2) | |
346 #define BREAK_HISR_STACK_SIZE (512) /* Bytes. */ | |
347 | |
348 /* | |
349 * These macros allow to read and write a UART register. | |
350 */ | |
351 | |
352 #define READ_UART_REGISTER(UART,REG) \ | |
353 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) | |
354 | |
355 #define WRITE_UART_REGISTER(UART,REG,VALUE) \ | |
356 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) = (VALUE) | |
357 | |
358 #define RESET_BIT(UART,REG,BIT) \ | |
359 (WRITE_UART_REGISTER ( \ | |
360 UART, REG, READ_UART_REGISTER (UART, REG) & ~(1 << (BIT)))) | |
361 | |
362 #define SET_BIT(UART,REG,BIT) \ | |
363 (WRITE_UART_REGISTER ( \ | |
364 UART, REG, READ_UART_REGISTER (UART, REG) | (1 << (BIT)))) | |
365 | |
366 | |
367 /* | |
368 * These macros allow to enable or disable the wake-up interrupt. | |
369 */ | |
370 | |
371 #define ENABLE_WAKEUP_INTERRUPT(UART) \ | |
372 SET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
373 | |
374 #define DISABLE_WAKEUP_INTERRUPT(UART) \ | |
375 RESET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
376 | |
377 | |
378 /* | |
379 * These macros allow to enable or disable the DSR interrupt. | |
380 */ | |
381 | |
382 #define ENABLE_DSR_INTERRUPT(UART) \ | |
383 SET_BIT(UART, SCR, DSR_IT_BIT); | |
384 | |
385 #define DISABLE_DSR_INTERRUPT(UART) \ | |
386 RESET_BIT(UART, SCR, DSR_IT_BIT); | |
387 | |
388 | |
389 /* | |
390 * The transmitter is disabled only when the application disables the driver. | |
391 * To disable the driver, the receiver and the transmitter are disabled by the | |
392 * application. The transmitter is disabled first to test if the driver is | |
393 * disabled. | |
394 */ | |
395 | |
396 #define DRIVER_DISABLED(UART) ((UART)->tx_stopped_by_application) | |
397 | |
398 #define DISABLE_DRIVER(UART) \ | |
399 { \ | |
400 (UART)->tx_stopped_by_application = 1; \ | |
401 (UART)->rx_stopped_by_application = 1; \ | |
402 } | |
403 | |
404 #define ENABLE_DRIVER(UART) \ | |
405 { \ | |
406 (UART)->rx_stopped_by_application = 0; \ | |
407 (UART)->tx_stopped_by_application = 0; \ | |
408 } | |
409 | |
410 /* | |
411 * Low and high watermarks for the RX buffer. If it is enabled, the flow | |
412 * control is activated or deactivated according to these values. | |
413 * The high watermark value allows to copy an array filled with the RX FIFO | |
414 * into the RX buffer. | |
415 */ | |
416 | |
417 #define RX_LOW_WATERMARK(RX_BUFFER_SIZE) (FIFO_SIZE) | |
418 #define RX_HIGH_WATERMARK(RX_BUFFER_SIZE) ((RX_BUFFER_SIZE) - 2 * FIFO_SIZE) | |
419 | |
420 /* | |
421 * This macro allows to know if the RX buffer is full. It must be called only | |
422 * from the RX HISR. If it is called from the application, the rx_in and | |
423 * rx_fifo_in pointers may be updated if a RX interrupt occurs or if the | |
424 * RX HISR is activated. | |
425 */ | |
426 | |
427 #define RX_BUFFER_FULL(UART) \ | |
428 (((UART)->rx_in == (UART)->rx_out - 1) || \ | |
429 ((UART)->rx_in == (UART)->rx_out + (UART)->buffer_size)) | |
430 | |
431 /* | |
432 * This macro allows to know if the TX buffer is empty. | |
433 */ | |
434 | |
435 #define TX_BUFFER_EMPTY(UART) \ | |
436 ((UART)->tx_in == (UART)->tx_out) | |
437 | |
438 /* | |
439 * This macro is used to convert a time (unit: ms) into a number of TDMA. | |
440 * 1 TDMA = 4.6 ms (23/5). | |
441 */ | |
442 | |
443 #define CONVERT_TIME_IN_TDMA(TIME) (((TIME) * 5) / 23) | |
444 | |
445 /* | |
446 * This structure describes an UART compatible with the UART 16750 and | |
447 * contains some fields to manage this UART. | |
448 */ | |
449 | |
450 typedef struct s_uart { | |
451 | |
452 SYS_UWORD32 base_address; | |
453 | |
454 /* | |
455 * HISR executed from the RX/TX interrupt handler. | |
456 */ | |
457 | |
458 NU_HISR rx_hisr_ctrl_block; | |
459 NU_HISR tx_hisr_ctrl_block; | |
460 NU_HISR v24_hisr_ctrl_block; | |
461 | |
462 char rx_hisr_stack[RX_HISR_STACK_SIZE]; | |
463 char tx_hisr_stack[TX_HISR_STACK_SIZE]; | |
464 char v24_hisr_stack[V24_HISR_STACK_SIZE]; | |
465 | |
466 /* | |
467 * 2 arrays are used to store bytes read in RX FIFO. A UART RX interrupt | |
468 * may occur while executing RX operations in RX HISR. To avoid overwriting | |
469 * the array in which received bytes are stored, a second array is used. | |
470 */ | |
471 | |
472 SYS_UWORD8 *rx_buffer_used_by_rx_lisr; | |
473 SYS_UWORD8 *rx_buffer_used_by_rx_hisr; | |
474 SYS_UWORD8 rx_fifo_byte_1[FIFO_SIZE]; | |
475 SYS_UWORD8 rx_fifo_byte_2[FIFO_SIZE]; | |
476 SYS_UWORD16 bytes_in_rx_buffer_1; | |
477 SYS_UWORD16 bytes_in_rx_buffer_2; | |
478 | |
479 /* | |
480 * RX and TX buffers. | |
481 * One character is not used in each buffer to allow to know if the buffer | |
482 * is empty or not (See macro RX_BUFFER_FULL). If buffers are empty, | |
483 * rx_in = rx_out and tx_in = tx_out. It is impossible to use fields to | |
484 * count the number of bytes in each buffer because these fields may be | |
485 * updated from the application and from the interrupt handlers. That avoids | |
486 * to have conflicts. | |
487 */ | |
488 | |
489 SYS_UWORD16 buffer_size; | |
490 SYS_UWORD16 rx_threshold_level; | |
491 SYS_UWORD16 tx_threshold_level; | |
492 SYS_UWORD8 rx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
493 SYS_UWORD8 tx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
494 SYS_UWORD8 *rx_in; | |
495 SYS_UWORD8 *rx_out; | |
496 SYS_UWORD8 *tx_in; | |
497 SYS_UWORD8 *tx_out; | |
498 | |
499 /* | |
500 * Escape sequence. | |
501 * the field esc_seq_modified may have 2 values: | |
502 * - 0: No modification. | |
503 * - 1: Parameters are in the process of modification: The detection | |
504 * is stopped. | |
505 */ | |
506 | |
507 NU_TIMER guard_period_timer_ctrl_block; | |
508 SYS_UWORD8 esc_seq_modified; | |
509 SYS_UWORD8 esc_seq_detection_state; | |
510 SYS_UWORD8 esc_seq_character; | |
511 UNSIGNED guard_period; | |
512 UNSIGNED current_time; | |
513 UNSIGNED previous_time; | |
514 | |
515 /* | |
516 * Flow control. | |
517 */ | |
518 | |
519 T_flowCtrlMode flow_control_mode; | |
520 SYS_BOOL send_xon_xoff; | |
521 SYS_UWORD8 xon_xoff_to_send; | |
522 SYS_UWORD8 xon_character; | |
523 SYS_UWORD8 xoff_character; | |
524 SYS_BOOL rx_stopped_by_application; | |
525 SYS_BOOL rx_stopped_by_driver; | |
526 SYS_BOOL rx_stopped_by_lisr; | |
527 SYS_BOOL tx_stopped_by_application; | |
528 SYS_BOOL tx_stopped_by_driver; | |
529 /* SYS_BOOL tx_stopped_by_lisr;*/ | |
530 | |
531 /* | |
532 * Break. | |
533 */ | |
534 | |
535 SYS_BOOL break_received; | |
536 SYS_BOOL break_to_send; | |
537 SYS_BOOL break_in_progress; | |
538 NU_HISR break_hisr_ctrl_block; | |
539 char break_hisr_stack[BREAK_HISR_STACK_SIZE]; | |
540 NU_TIMER break_timer_ctrl_block; | |
541 UNSIGNED baudrate; | |
542 UNSIGNED autobauding; | |
543 UNSIGNED bits_per_char; /* Including start, stop and parity bits. */ | |
544 UNSIGNED break_length; /* In bytes. */ | |
545 UNSIGNED time_without_character; | |
546 | |
547 /* | |
548 * Callback (UAF_ReadData and UAF_WriteData). | |
549 * rd: read, wr: write. | |
550 */ | |
551 | |
552 SYS_BOOL esc_seq_received; | |
553 SYS_UWORD8 rts_level; /* RTS on RS232 side, CTS on chipset side. | |
554 1: The RS232 line is deactivated (low). */ | |
555 | |
556 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
557 SYS_UWORD8 dtr_level; /* Controlled with an I/O on C & D-Sample and | |
558 handled by Calypso+ on E-Sample. | |
559 1: The RS232 line is deactivated (low). */ | |
560 /* | |
561 * When the DTR interrupt is detected the user's Rx callback function must | |
562 * be called but if the Rx FIFO is not empty the Rx HISR must be activated | |
563 * to read the bytes received in the Rx FIFO and to put them into the Rx | |
564 * buffer before to call the user's Rx callback function. | |
565 * If the Rx HISR is activated due to a Rx interrupt the user's Rx callback | |
566 * function will be called if conditions to call it are fulfilled. If it is | |
567 * activated due to the DTR interrupt the user's Rx callback function must | |
568 * be called without any conditions. | |
569 * Because the Rx HISR may have been activated but not executed before the | |
570 * DTR interrupt we must be sure that the user's Rx callback function will | |
571 * be called for each Rx HISR activation. Call is done for Rx HISR activated | |
572 * on Rx interrupt if conditions are fulfilled. | |
573 * A circular buffer of 2 elements is used to memorize the source of | |
574 * interrupt. Before the activation of the Rx HISR, the source of interrupt | |
575 * is memorized into this array. When the code of the Rx HISR is executed | |
576 * the user's Rx callback function is called if the source of interrupt was | |
577 * the DTR interrupt regardless of the other conditions. | |
578 * The level of DTR is saved to provide the level detected on Rx interrupt | |
579 * or DTR interrupt in the 'state' parameter of the user's Rx callback | |
580 * function. | |
581 */ | |
582 | |
583 SYS_BOOL dtr_change_detected[2]; | |
584 SYS_UWORD8 dtr_level_saved[2]; | |
585 SYS_UWORD8 index_it; | |
586 SYS_UWORD8 index_hisr; | |
587 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
588 | |
589 SYS_BOOL reading_suspended; | |
590 SYS_BOOL writing_suspended; | |
591 SYS_BOOL rd_call_from_hisr_in_progress; | |
592 SYS_BOOL wr_call_from_hisr_in_progress; | |
593 T_reInstMode rd_call_setup; | |
594 T_reInstMode wr_call_setup; | |
595 SYS_UWORD8 *rd_address[2]; | |
596 SYS_UWORD8 *wr_address[2]; | |
597 SYS_UWORD16 rd_size_before_call[2]; | |
598 SYS_UWORD16 rd_size_after_call[2]; | |
599 SYS_UWORD16 wr_size_before_call[2]; | |
600 SYS_UWORD16 wr_size_after_call[2]; | |
601 | |
602 void (*readOutFunc) (SYS_BOOL cldFromIrq, | |
603 T_reInstMode *reInstall, | |
604 SYS_UWORD8 nsource, | |
605 SYS_UWORD8 *source[], | |
606 SYS_UWORD16 size[], | |
607 SYS_UWORD32 state); | |
608 | |
609 void (*writeInFunc) (SYS_BOOL cldFromIrq, | |
610 T_reInstMode *reInstall, | |
611 SYS_UWORD8 ndest, | |
612 SYS_UWORD8 *dest[], | |
613 SYS_UWORD16 size[]); | |
614 | |
615 /* | |
616 * These fields are used to store the state defined in UAF_GetLineState.The | |
617 * first field is used when UAF_GetLineState and UAF_ReadData are not called. | |
618 * When one of these functions is called the second field is used. That | |
619 * avoids to lose events when UAF_GetLineState or UAF_ReadData resets the | |
620 * first field. | |
621 */ | |
622 | |
623 SYS_UWORD32 state_1; | |
624 SYS_UWORD32 state_2; | |
625 SYS_UWORD32 *state; | |
626 | |
627 /* | |
628 * Errors counters. | |
629 */ | |
630 | |
631 SYS_UWORD32 framing_error; | |
632 SYS_UWORD32 parity_error; | |
633 SYS_UWORD32 overrun_error; | |
634 SYS_UWORD32 spurious_interrupts; | |
635 | |
636 SYS_UWORD16 max_rx_fifo_level; | |
637 | |
638 } t_uart; | |
639 | |
640 | |
641 static t_uart uart_parameters; | |
642 | |
643 | |
644 static const SYS_UWORD32 base_address[NUMBER_OF_FD_UART] = | |
645 { | |
646 MEM_UART_IRDA, | |
647 MEM_UART_MODEM | |
648 #if (CHIPSET == 12) | |
649 , MEM_UART_MODEM2 | |
650 #endif | |
651 }; | |
652 | |
653 | |
654 /* | |
655 * DLL (LSB) and DLH (MSB) registers values using the 13 MHz clock. | |
656 */ | |
657 | |
658 static const SYS_UWORD8 dll[] = | |
659 { | |
660 0, /* Auto baud: */ | |
661 81, /* 75 baud. */ | |
662 40, /* 150 baud. */ | |
663 148, /* 300 baud. */ | |
664 74, /* 600 baud. */ | |
665 165, /* 1200 baud. */ | |
666 83, /* 2400 baud. */ | |
667 169, /* 4800 baud. */ | |
668 113, /* 7200 baud. */ | |
669 84, /* 9600 baud. */ | |
670 56, /* 14400 baud. */ | |
671 42, /* 19200 baud. */ | |
672 28, /* 28800 baud. */ | |
673 24, /* 33900 baud: not supported. */ | |
674 21, /* 38400 baud. */ | |
675 14, /* 57600 baud. */ | |
676 7, /* 115200 baud. */ | |
677 0, /* 203125 baud: not supported. */ | |
678 0, /* 406250 baud: not supported. */ | |
679 0 /* 812500 baud: not supported. */ | |
680 }; | |
681 | |
682 static const SYS_UWORD8 dlh[] = | |
683 { | |
684 0, /* Auto baud: */ | |
685 42, /* 75 baud. */ | |
686 21, /* 150 baud. */ | |
687 10, /* 300 baud. */ | |
688 5, /* 600 baud. */ | |
689 2, /* 1200 baud. */ | |
690 1, /* 2400 baud. */ | |
691 0, /* 4800 baud. */ | |
692 0, /* 7200 baud. */ | |
693 0, /* 9600 baud. */ | |
694 0, /* 14400 baud. */ | |
695 0, /* 19200 baud. */ | |
696 0, /* 28800 baud. */ | |
697 0, /* 33900 baud: not supported. */ | |
698 0, /* 38400 baud. */ | |
699 0, /* 57600 baud. */ | |
700 0, /* 115200 baud. */ | |
701 0, /* 203125 baud: not supported. */ | |
702 0, /* 406250 baud: not supported. */ | |
703 0 /* 812500 baud: not supported. */ | |
704 }; | |
705 | |
706 static const UNSIGNED baudrate_value[] = | |
707 { | |
708 1, | |
709 75, | |
710 150, | |
711 300, | |
712 600, | |
713 1200, | |
714 2400, | |
715 4800, | |
716 7200, | |
717 9600, | |
718 14400, | |
719 19200, | |
720 28800, | |
721 0, /* Not supported. */ | |
722 38400, | |
723 57600, | |
724 115200, | |
725 0, /* Not supported. */ | |
726 0, /* Not supported. */ | |
727 0 /* Not supported. */ | |
728 }; | |
729 | |
730 | |
731 | |
732 | |
733 /******************************************************************************* | |
734 * | |
735 * get_bytes_in_rx_buffer | |
736 * | |
737 * Purpose : Gets the number of bytes in the RX buffer. | |
738 * | |
739 * Arguments: In : uart: Pointer on the UART structure. | |
740 * Out: none | |
741 * | |
742 * Returns : The number of bytes in the RX buffer. | |
743 * | |
744 ******************************************************************************/ | |
745 | |
746 static SYS_UWORD16 | |
747 get_bytes_in_rx_buffer (t_uart *uart) | |
748 { | |
749 SYS_UWORD16 bytes_in_rx_buffer; | |
750 volatile SYS_UWORD8 *rx_in; | |
751 | |
752 rx_in = uart->rx_in; | |
753 | |
754 if (uart->rx_out <= rx_in) | |
755 bytes_in_rx_buffer = (SYS_UWORD16) (rx_in - uart->rx_out); | |
756 else | |
757 bytes_in_rx_buffer = | |
758 (SYS_UWORD16) (rx_in - uart->rx_out + uart->buffer_size + 1); | |
759 | |
760 return (bytes_in_rx_buffer); | |
761 } | |
762 | |
763 /******************************************************************************* | |
764 * | |
765 * get_bytes_in_tx_buffer | |
766 * | |
767 * Purpose : Gets the number of bytes in the TX buffer. | |
768 * | |
769 * Arguments: In : uart: Pointer on the UART structure. | |
770 * Out: none | |
771 * | |
772 * Returns : The number of bytes in the TX buffer. | |
773 * | |
774 ******************************************************************************/ | |
775 | |
776 static SYS_UWORD16 | |
777 get_bytes_in_tx_buffer (t_uart *uart) | |
778 { | |
779 SYS_UWORD16 bytes_in_tx_buffer; | |
780 volatile SYS_UWORD8 *tx_out; | |
781 | |
782 tx_out = uart->tx_out; | |
783 | |
784 if (tx_out <= uart->tx_in) | |
785 bytes_in_tx_buffer = (SYS_UWORD16) (uart->tx_in - tx_out); | |
786 else | |
787 bytes_in_tx_buffer = | |
788 (SYS_UWORD16) (uart->tx_in - tx_out + uart->buffer_size + 1); | |
789 | |
790 return (bytes_in_tx_buffer); | |
791 } | |
792 | |
793 /******************************************************************************* | |
794 * | |
795 * compute_break_time | |
796 * | |
797 * Purpose : Computes a number of TDMA from 3 parameters: | |
798 * - baudrate, | |
799 * - bits per character including start bit, stop bits and parity, | |
800 * - number of characters. | |
801 * Due to the TDMA value (4.6 ms), a minimal value is sent: 2 TDMA. | |
802 * | |
803 * Arguments: In : baudrate | |
804 * bits_per_char | |
805 * number_of_chars | |
806 * Out: none | |
807 * | |
808 * Returns : The number of TDMA. | |
809 * | |
810 ******************************************************************************/ | |
811 | |
812 static UNSIGNED | |
813 compute_break_time (UNSIGNED baudrate, | |
814 UNSIGNED bits_per_char, | |
815 UNSIGNED number_of_chars) | |
816 { | |
817 UNSIGNED number_of_tdma; | |
818 | |
819 number_of_tdma = CONVERT_TIME_IN_TDMA ( | |
820 1000 * bits_per_char * number_of_chars / baudrate); | |
821 | |
822 if (number_of_tdma == 0) | |
823 number_of_tdma = 1; | |
824 | |
825 number_of_tdma++; | |
826 | |
827 return (number_of_tdma); | |
828 } | |
829 | |
830 /******************************************************************************* | |
831 * | |
832 * update_reading_callback | |
833 * | |
834 * Purpose : Updates the sizes array and the addresses array and get and builds | |
835 * the state parameter defined in UAF_GetLineState to call the | |
836 * readOutFunc function. | |
837 * | |
838 * Arguments: In : uart : Pointer on the UART structure. | |
839 * call_source: 0: application, 1: HISR (Rx or V24), 3: Rx HISR | |
840 * Out: none | |
841 * | |
842 * Returns : none | |
843 * | |
844 ******************************************************************************/ | |
845 | |
846 static void | |
847 update_reading_callback (t_uart *uart, | |
848 SYS_BOOL call_source) | |
849 { | |
850 SYS_UWORD32 state; | |
851 SYS_UWORD8 dtr_level; | |
852 SYS_UWORD8 fragments_number; | |
853 SYS_UWORD16 bytes_in_rx_buffer; | |
854 volatile SYS_UWORD8 *rx_in; | |
855 | |
856 /* | |
857 * Update the sizes array and the addresses array. | |
858 * A copy of rx_in is used because it may be updated by the interrupt | |
859 * handler if this function is called from the application. | |
860 */ | |
861 | |
862 rx_in = uart->rx_in; | |
863 | |
864 if (uart->rx_out < rx_in) { | |
865 | |
866 fragments_number = 1; | |
867 | |
868 uart->rd_address[0] = uart->rx_out; | |
869 uart->rd_size_before_call[0] = (SYS_UWORD16) (rx_in - uart->rx_out); | |
870 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
871 | |
872 uart->rd_size_before_call[1] = 0; | |
873 uart->rd_size_after_call[1] = 0; | |
874 | |
875 bytes_in_rx_buffer = uart->rd_size_before_call[0]; | |
876 | |
877 } else if (rx_in == uart->rx_out) { /* RX buffer empty. */ | |
878 | |
879 fragments_number = 1; | |
880 | |
881 uart->rd_address[0] = uart->rx_out; | |
882 uart->rd_size_before_call[0] = 0; | |
883 uart->rd_size_after_call[0] = 0; | |
884 | |
885 uart->rd_size_before_call[1] = 0; | |
886 uart->rd_size_after_call[1] = 0; | |
887 | |
888 bytes_in_rx_buffer = 0; | |
889 | |
890 } else { | |
891 | |
892 fragments_number = 2; | |
893 | |
894 uart->rd_address[0] = uart->rx_out; | |
895 uart->rd_size_before_call[0] = | |
896 uart->buffer_size + 1 - (SYS_UWORD16) (uart->rx_out - | |
897 &(uart->rx_buffer[0])); | |
898 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
899 | |
900 uart->rd_address[1] = &(uart->rx_buffer[0]); | |
901 uart->rd_size_before_call[1] = (SYS_UWORD16) (rx_in - | |
902 &(uart->rx_buffer[0])); | |
903 uart->rd_size_after_call[1] = uart->rd_size_before_call[1]; | |
904 | |
905 bytes_in_rx_buffer = | |
906 uart->rd_size_before_call[0] + uart->rd_size_before_call[1]; | |
907 | |
908 if (!uart->rd_size_before_call[1]) | |
909 fragments_number = 1; | |
910 } | |
911 | |
912 /* | |
913 * Build the state parameter defined in UAF_GetLineState. | |
914 * The field state_2 is used when state_1 is set to 0 to avoid to | |
915 * lose events detected in the RX interrupt handler. | |
916 */ | |
917 | |
918 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
919 if (call_source == 3) /* Call from Rx HISR */ | |
920 dtr_level = uart->dtr_level_saved[uart->index_hisr]; | |
921 else | |
922 dtr_level = uart->dtr_level; | |
923 #endif | |
924 | |
925 state = uart->state_2; | |
926 uart->state_2 = 0; | |
927 uart->state = &(uart->state_2); | |
928 | |
929 state |= uart->state_1; | |
930 uart->state_1 = 0; | |
931 uart->state = &(uart->state_1); | |
932 | |
933 state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
934 | |
935 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
936 (((SYS_UWORD32) dtr_level) << DTR) | | |
937 #endif | |
938 | |
939 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
940 uart->tx_stopped_by_driver)) << TXSTP) | | |
941 | |
942 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
943 uart->rx_stopped_by_driver)) << RXSTP) | | |
944 | |
945 (((SYS_UWORD32) (uart->buffer_size - bytes_in_rx_buffer)) << RXBLEV)); | |
946 | |
947 /* | |
948 * Fields SA, SB and X are set according to the flow control: | |
949 * | |
950 * None RTS/CTS XON/XOFF | |
951 * SA DTR DTR DTR | |
952 * SB RTS 0 RTS | |
953 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
954 * | |
955 * DTR is supported on C, D & E-Sample. | |
956 */ | |
957 | |
958 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
959 state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
960 #endif | |
961 | |
962 if (uart->flow_control_mode != fc_rts) | |
963 state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
964 | |
965 if (uart->flow_control_mode == fc_rts) | |
966 state |= (((SYS_UWORD32) uart->rts_level) << X); | |
967 | |
968 else if ((uart->flow_control_mode == fc_xoff) && | |
969 (uart->tx_stopped_by_application || | |
970 uart->tx_stopped_by_driver)) | |
971 state |= (1 << X); | |
972 | |
973 /* | |
974 * Call the readOutFunc function with these parameters. | |
975 */ | |
976 | |
977 uart->rd_call_setup = rm_notDefined; | |
978 | |
979 (*(uart->readOutFunc)) (call_source & 0x01, /* From HISR or application */ | |
980 &(uart->rd_call_setup), | |
981 fragments_number, | |
982 &(uart->rd_address[0]), | |
983 &(uart->rd_size_after_call[0]), | |
984 state); | |
985 } | |
986 | |
987 /******************************************************************************* | |
988 * | |
989 * update_writing_callback | |
990 * | |
991 * Purpose : Updates the sizes array and the addresses array to call the | |
992 * writeInFunc function. | |
993 * | |
994 * Arguments: In : uart : Pointer on the UART structure. | |
995 * call_source: 0: application, 1: HISR | |
996 * Out: none | |
997 * | |
998 * Returns : none | |
999 * | |
1000 ******************************************************************************/ | |
1001 | |
1002 static void | |
1003 update_writing_callback (t_uart *uart, | |
1004 SYS_BOOL call_source) | |
1005 { | |
1006 SYS_UWORD8 fragments_number; | |
1007 volatile SYS_UWORD8 *tx_out; | |
1008 | |
1009 /* | |
1010 * Update the array of sizes and the array of addresses. | |
1011 * A copy of tx_out is used because it may be updated by the interrupt | |
1012 * handler if this function is called from the application. | |
1013 */ | |
1014 | |
1015 tx_out = uart->tx_out; | |
1016 | |
1017 if (uart->tx_in < tx_out) { | |
1018 | |
1019 fragments_number = 1; | |
1020 | |
1021 uart->wr_address[0] = uart->tx_in; | |
1022 uart->wr_size_before_call[0] = | |
1023 (SYS_UWORD16) (tx_out - uart->tx_in - 1); | |
1024 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1025 | |
1026 uart->wr_size_before_call[1] = 0; | |
1027 uart->wr_size_after_call[1] = 0; | |
1028 | |
1029 } else if (tx_out == &(uart->tx_buffer[0])) { | |
1030 | |
1031 fragments_number = 1; | |
1032 | |
1033 uart->wr_address[0] = uart->tx_in; | |
1034 uart->wr_size_before_call[0] = | |
1035 uart->buffer_size - | |
1036 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1037 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1038 | |
1039 uart->wr_size_before_call[1] = 0; | |
1040 uart->wr_size_after_call[1] = 0; | |
1041 | |
1042 } else { | |
1043 | |
1044 fragments_number = 2; | |
1045 | |
1046 uart->wr_address[0] = uart->tx_in; | |
1047 uart->wr_size_before_call[0] = | |
1048 uart->buffer_size + 1 - | |
1049 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1050 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1051 | |
1052 uart->wr_address[1] = &(uart->tx_buffer[0]); | |
1053 uart->wr_size_before_call[1] = | |
1054 (SYS_UWORD16) (tx_out - &(uart->tx_buffer[0]) - 1); | |
1055 uart->wr_size_after_call[1] = uart->wr_size_before_call[1]; | |
1056 | |
1057 if (!uart->wr_size_before_call[1]) | |
1058 fragments_number = 1; | |
1059 } | |
1060 | |
1061 /* | |
1062 * Call the writeInFunc function with these parameters; | |
1063 */ | |
1064 | |
1065 uart->wr_call_setup = rm_notDefined; | |
1066 | |
1067 (*(uart->writeInFunc)) (call_source, | |
1068 &(uart->wr_call_setup), | |
1069 fragments_number, | |
1070 &(uart->wr_address[0]), | |
1071 &(uart->wr_size_after_call[0])); | |
1072 } | |
1073 | |
1074 /******************************************************************************* | |
1075 * | |
1076 * stop_break | |
1077 * | |
1078 * Purpose : The timer is activated to expire when a time corresponding to the | |
1079 * sending time of 2 characters at least has elapsed. After a break, | |
1080 * no character may be sent during this period. | |
1081 * | |
1082 * Arguments: In : id: parameter not used. | |
1083 * Out: none | |
1084 * | |
1085 * Returns : none | |
1086 * | |
1087 ******************************************************************************/ | |
1088 | |
1089 static VOID | |
1090 stop_break (UNSIGNED id) | |
1091 { | |
1092 t_uart *uart; | |
1093 | |
1094 uart = &uart_parameters; | |
1095 | |
1096 uart->break_to_send = 0; | |
1097 uart->break_in_progress = 0; | |
1098 | |
1099 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1100 /* | |
1101 * Disable sleep mode. | |
1102 */ | |
1103 | |
1104 WRITE_UART_REGISTER ( | |
1105 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1106 #endif | |
1107 | |
1108 /* | |
1109 * Unmask Tx interrupt. | |
1110 */ | |
1111 | |
1112 WRITE_UART_REGISTER ( | |
1113 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1114 } | |
1115 | |
1116 /******************************************************************************* | |
1117 * | |
1118 * hisr_start_break | |
1119 * | |
1120 * Purpose : Enables the timer used to control the time without character. | |
1121 * | |
1122 * Arguments: In : none | |
1123 * Out: none | |
1124 * | |
1125 * Returns : none | |
1126 * | |
1127 ******************************************************************************/ | |
1128 | |
1129 static VOID | |
1130 hisr_start_break (VOID) | |
1131 { | |
1132 t_uart *uart; | |
1133 | |
1134 uart = &uart_parameters; | |
1135 | |
1136 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1137 NU_DISABLE_TIMER); | |
1138 | |
1139 (void) NU_Reset_Timer (&(uart->break_timer_ctrl_block), | |
1140 stop_break, | |
1141 uart->time_without_character, | |
1142 0, /* The timer expires once. */ | |
1143 NU_DISABLE_TIMER); | |
1144 | |
1145 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1146 NU_ENABLE_TIMER); | |
1147 } | |
1148 | |
1149 /******************************************************************************* | |
1150 * | |
1151 * stop_receiver | |
1152 * | |
1153 * Purpose : Activates DTR or RTS or sends XOFF. | |
1154 * | |
1155 * Arguments: In : uart: Pointer on the UART structure. | |
1156 * Out: none | |
1157 * | |
1158 * Returns : none | |
1159 * | |
1160 ******************************************************************************/ | |
1161 | |
1162 static void | |
1163 stop_receiver (t_uart *uart) | |
1164 { | |
1165 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1166 /* | |
1167 * Disable sleep mode. | |
1168 */ | |
1169 | |
1170 WRITE_UART_REGISTER ( | |
1171 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1172 #endif | |
1173 | |
1174 switch (uart->flow_control_mode) { | |
1175 | |
1176 case fc_rts: | |
1177 | |
1178 /* | |
1179 * CTS (RTS on UART side) is deactivated (high). | |
1180 */ | |
1181 | |
1182 WRITE_UART_REGISTER ( | |
1183 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
1184 break; | |
1185 | |
1186 case fc_xoff: | |
1187 | |
1188 uart->xon_xoff_to_send = uart->xoff_character; | |
1189 uart->send_xon_xoff = 1; | |
1190 | |
1191 /* | |
1192 * Unmask Tx interrupt. | |
1193 */ | |
1194 | |
1195 WRITE_UART_REGISTER ( | |
1196 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1197 break; | |
1198 } | |
1199 } | |
1200 | |
1201 /******************************************************************************* | |
1202 * | |
1203 * start_receiver | |
1204 * | |
1205 * Purpose : Deactivates DTR or RTS or sends XON. | |
1206 * | |
1207 * Arguments: In : uart: Pointer on the UART structure. | |
1208 * Out: none | |
1209 * | |
1210 * Returns : none | |
1211 * | |
1212 ******************************************************************************/ | |
1213 | |
1214 static void | |
1215 start_receiver (t_uart *uart) | |
1216 { | |
1217 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1218 /* | |
1219 * Disable sleep mode. | |
1220 */ | |
1221 | |
1222 WRITE_UART_REGISTER ( | |
1223 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1224 #endif | |
1225 | |
1226 switch (uart->flow_control_mode) { | |
1227 | |
1228 case fc_rts: | |
1229 | |
1230 /* | |
1231 * CTS (RTS on UART side) is activated (low). | |
1232 */ | |
1233 | |
1234 WRITE_UART_REGISTER ( | |
1235 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
1236 break; | |
1237 | |
1238 case fc_xoff: | |
1239 | |
1240 uart->xon_xoff_to_send = uart->xon_character; | |
1241 uart->send_xon_xoff = 1; | |
1242 | |
1243 /* | |
1244 * Unmask Tx interrupt. | |
1245 */ | |
1246 | |
1247 WRITE_UART_REGISTER ( | |
1248 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1249 break; | |
1250 } | |
1251 } | |
1252 | |
1253 /******************************************************************************* | |
1254 * | |
1255 * add_esc_seq_char_in_rx_buffer | |
1256 * | |
1257 * Purpose : Writes one escape sequence character in the RX buffer. | |
1258 * | |
1259 * Arguments: In : uart: Pointer on the UART structure. | |
1260 * Out: none | |
1261 * | |
1262 * Returns : none | |
1263 * | |
1264 ******************************************************************************/ | |
1265 | |
1266 static void | |
1267 add_esc_seq_char_in_rx_buffer (t_uart *uart) | |
1268 { | |
1269 /* | |
1270 * IF the RX buffer is not full, write an escape sequence character in the | |
1271 * RX buffer and check wrap-around. | |
1272 */ | |
1273 | |
1274 if (!RX_BUFFER_FULL (uart)) { | |
1275 | |
1276 *(uart->rx_in++) = uart->esc_seq_character; | |
1277 | |
1278 if (uart->rx_in == &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
1279 uart->rx_in = &(uart->rx_buffer[0]); | |
1280 } | |
1281 } | |
1282 | |
1283 /******************************************************************************* | |
1284 * | |
1285 * analyze_guard_period_timer_expiration | |
1286 * | |
1287 * Purpose : According to the state of the escape sequence detection, 1 or 2 | |
1288 * escape sequence characters may be written into the TX buffer or | |
1289 * the escape sequence is declared as detected. | |
1290 * If 1 or 2 escape sequence characters have been detected the | |
1291 * guard period must not expire. | |
1292 * If 3 characters have been detected the escape sequence must | |
1293 * expire. | |
1294 * | |
1295 * Arguments: In : id: parameter not used. | |
1296 * Out: none | |
1297 * | |
1298 * Returns : none | |
1299 * | |
1300 ******************************************************************************/ | |
1301 | |
1302 static VOID | |
1303 analyze_guard_period_timer_expiration (UNSIGNED id) | |
1304 { | |
1305 t_uart *uart; | |
1306 SYS_UWORD16 bytes_in_rx_buffer; | |
1307 | |
1308 uart = &uart_parameters; | |
1309 | |
1310 switch (uart->esc_seq_detection_state) { | |
1311 | |
1312 case ONE_CHAR_DETECTED: | |
1313 | |
1314 /* | |
1315 * 1 escape sequence character has been detected. The guard period has | |
1316 * ellapsed. This character is written into the TX buffer. | |
1317 */ | |
1318 | |
1319 add_esc_seq_char_in_rx_buffer (uart); | |
1320 break; | |
1321 | |
1322 case TWO_CHARS_DETECTED: | |
1323 | |
1324 /* | |
1325 * 2 escape sequence characters have been detected. The guard period has | |
1326 * ellapsed. These characters are written into the TX buffer. | |
1327 */ | |
1328 | |
1329 add_esc_seq_char_in_rx_buffer (uart); | |
1330 add_esc_seq_char_in_rx_buffer (uart); | |
1331 | |
1332 break; | |
1333 | |
1334 case THREE_CHARS_DETECTED: | |
1335 | |
1336 /* | |
1337 * 3 escape sequence characters have been detected and the guard period | |
1338 * has ellapsed. The escape sequence is detected. | |
1339 */ | |
1340 | |
1341 uart->esc_seq_received = 1; | |
1342 *(uart->state) |= (1 << ESC); | |
1343 | |
1344 break; | |
1345 } | |
1346 | |
1347 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1348 | |
1349 /* | |
1350 * If the high watermark is reached, RTS is activated or XOFF is sent | |
1351 * according to the flow control mode. | |
1352 */ | |
1353 | |
1354 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
1355 | |
1356 if ((uart->flow_control_mode != fc_none) && | |
1357 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
1358 | |
1359 /* | |
1360 * Check if receipt must be stopped. | |
1361 */ | |
1362 | |
1363 if (!uart->rx_stopped_by_driver) { | |
1364 | |
1365 uart->rx_stopped_by_driver = 1; | |
1366 if (!uart->rx_stopped_by_application) | |
1367 stop_receiver (uart); | |
1368 } | |
1369 } | |
1370 | |
1371 /* | |
1372 * If a reading was suspended or if the callback function is installed, | |
1373 * it is called if one of these conditions is fulfiled: | |
1374 * - the RX threshold level is reached, | |
1375 * - a break has been detected, | |
1376 * - an escape sequence has been detected, | |
1377 */ | |
1378 | |
1379 if ((!uart->rd_call_from_hisr_in_progress) && | |
1380 (uart->reading_suspended || | |
1381 (uart->rd_call_setup == rm_reInstall))) { | |
1382 | |
1383 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
1384 uart->break_received || | |
1385 uart->esc_seq_received) { | |
1386 | |
1387 uart->rd_call_from_hisr_in_progress = 1; | |
1388 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
1389 | |
1390 uart->reading_suspended = 0; | |
1391 uart->break_received = 0; | |
1392 uart->esc_seq_received = 0; | |
1393 } | |
1394 } | |
1395 } | |
1396 | |
1397 /******************************************************************************* | |
1398 * | |
1399 * stop_guard_period_timer | |
1400 * | |
1401 * Purpose : Stops the timer used to detect the guard period expiration. | |
1402 * | |
1403 * Arguments: In : uart: Pointer on the UART structure. | |
1404 * Out: none | |
1405 * | |
1406 * Returns : none | |
1407 * | |
1408 ******************************************************************************/ | |
1409 | |
1410 static void | |
1411 stop_guard_period_timer (t_uart *uart) | |
1412 { | |
1413 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1414 NU_DISABLE_TIMER); | |
1415 } | |
1416 | |
1417 /******************************************************************************* | |
1418 * | |
1419 * start_guard_period_timer | |
1420 * | |
1421 * Purpose : Starts a timer which expires if the guard period has ellapsed. | |
1422 * | |
1423 * Arguments: In : uart: Pointer on the UART structure. | |
1424 * Out: none | |
1425 * | |
1426 * Returns : none | |
1427 * | |
1428 ******************************************************************************/ | |
1429 | |
1430 static void | |
1431 start_guard_period_timer (t_uart *uart) | |
1432 { | |
1433 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1434 NU_DISABLE_TIMER); | |
1435 | |
1436 (void) NU_Reset_Timer (&(uart->guard_period_timer_ctrl_block), | |
1437 analyze_guard_period_timer_expiration, | |
1438 uart->guard_period, | |
1439 0, /* The timer expires once. */ | |
1440 NU_DISABLE_TIMER); | |
1441 | |
1442 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1443 NU_ENABLE_TIMER); | |
1444 } | |
1445 | |
1446 /******************************************************************************* | |
1447 * | |
1448 * detect_escape_sequence | |
1449 * | |
1450 * Purpose : The state machine used to detect an escape sequence is updated | |
1451 * according to the array of bytes to analyse. If the state machine | |
1452 * goes to the initial state due to a break in the sequence | |
1453 * detection, the previous characters are put into the RX buffer. | |
1454 * | |
1455 * Arguments: In : uart: Pointer on the UART structure. | |
1456 * Out: none | |
1457 * | |
1458 * Returns : 0: Break in detection or a sequence has been detected. | |
1459 * 1: A sequence may be detected. | |
1460 * | |
1461 ******************************************************************************/ | |
1462 | |
1463 static int | |
1464 detect_escape_sequence (t_uart *uart) | |
1465 { | |
1466 int detection_result; | |
1467 SYS_UWORD8 *rx_fifo_byte; | |
1468 SYS_UWORD16 bytes_in_rx_buffer; | |
1469 UNSIGNED elapsed_time; | |
1470 | |
1471 detection_result = 0; | |
1472 | |
1473 rx_fifo_byte = uart->rx_buffer_used_by_rx_hisr; | |
1474 if (rx_fifo_byte == &(uart->rx_fifo_byte_1[0])) | |
1475 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_1; | |
1476 else | |
1477 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_2; | |
1478 | |
1479 if (uart->current_time > uart->previous_time) | |
1480 elapsed_time = uart->current_time - uart->previous_time; | |
1481 else | |
1482 elapsed_time = | |
1483 MAX_UNSIGNED_32 - uart->previous_time + uart->current_time; | |
1484 | |
1485 switch (uart->esc_seq_detection_state) { | |
1486 | |
1487 case INITIALIZATION: | |
1488 | |
1489 /* | |
1490 * It is the first character received. It may be the first character | |
1491 * of an escape sequence. The elapsed_time variable is set to the | |
1492 * guard period value to consider this character as the first character | |
1493 * of an escape sequence. | |
1494 */ | |
1495 | |
1496 if (!uart->esc_seq_modified) { | |
1497 | |
1498 elapsed_time = uart->guard_period; | |
1499 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1500 } | |
1501 | |
1502 /* No break! */ | |
1503 | |
1504 case NO_ESCAPE_SEQUENCE: | |
1505 | |
1506 /* | |
1507 * To go to the next state (one, two or three characters detected): | |
1508 * - a guard period must have elapsed since the last receipt, | |
1509 * - the characters must belong to the escape sequence. | |
1510 */ | |
1511 | |
1512 if ((elapsed_time >= uart->guard_period) && | |
1513 (!uart->esc_seq_modified)) { | |
1514 | |
1515 switch (bytes_in_rx_buffer) { | |
1516 | |
1517 case 1: | |
1518 | |
1519 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1520 | |
1521 uart->esc_seq_detection_state = ONE_CHAR_DETECTED; | |
1522 start_guard_period_timer (uart); | |
1523 detection_result = 1; | |
1524 } | |
1525 | |
1526 break; | |
1527 | |
1528 case 2: | |
1529 | |
1530 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1531 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1532 | |
1533 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1534 start_guard_period_timer (uart); | |
1535 detection_result = 1; | |
1536 } | |
1537 | |
1538 break; | |
1539 | |
1540 case 3: | |
1541 | |
1542 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1543 (*rx_fifo_byte++ == uart->esc_seq_character) && | |
1544 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1545 | |
1546 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1547 start_guard_period_timer (uart); | |
1548 detection_result = 1; | |
1549 } | |
1550 | |
1551 break; | |
1552 | |
1553 default: | |
1554 | |
1555 /* | |
1556 * No action. | |
1557 */ | |
1558 | |
1559 break; | |
1560 } | |
1561 } | |
1562 | |
1563 uart->previous_time = uart->current_time; | |
1564 | |
1565 break; | |
1566 | |
1567 case ONE_CHAR_DETECTED: | |
1568 | |
1569 /* | |
1570 * To go to the next state (two or three characters detected): | |
1571 * - the difference between the current time and the previous time | |
1572 * must be less than the guard period, | |
1573 * - the characters must belong to the escape sequence. | |
1574 * Otherwise, an escape sequence character is written in the RX buffer. | |
1575 */ | |
1576 | |
1577 if (!uart->esc_seq_modified) { | |
1578 | |
1579 switch (bytes_in_rx_buffer) { | |
1580 | |
1581 case 1: | |
1582 | |
1583 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1584 | |
1585 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1586 detection_result = 1; | |
1587 } | |
1588 | |
1589 break; | |
1590 | |
1591 case 2: | |
1592 | |
1593 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1594 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1595 | |
1596 start_guard_period_timer (uart); /* Reset the timer. */ | |
1597 | |
1598 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1599 detection_result = 1; | |
1600 } | |
1601 | |
1602 break; | |
1603 | |
1604 default: | |
1605 | |
1606 /* | |
1607 * No action. | |
1608 */ | |
1609 | |
1610 break; | |
1611 } | |
1612 } | |
1613 | |
1614 if (!detection_result) { | |
1615 | |
1616 add_esc_seq_char_in_rx_buffer (uart); | |
1617 | |
1618 uart->previous_time = uart->current_time; | |
1619 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1620 } | |
1621 | |
1622 break; | |
1623 | |
1624 case TWO_CHARS_DETECTED: | |
1625 | |
1626 /* | |
1627 * To go to the next state (three chars detected): | |
1628 * - the difference between the current time and the previous time | |
1629 * must be less than the guard period, | |
1630 * - the character must belong to the escape sequence. | |
1631 * Otherwise, 2 escape sequence characters are written in the RX buffer. | |
1632 */ | |
1633 | |
1634 if (!uart->esc_seq_modified) { | |
1635 | |
1636 switch (bytes_in_rx_buffer) { | |
1637 | |
1638 case 1: | |
1639 | |
1640 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1641 | |
1642 start_guard_period_timer (uart); /* Reset the timer. */ | |
1643 | |
1644 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1645 detection_result = 1; | |
1646 } | |
1647 | |
1648 break; | |
1649 | |
1650 default: | |
1651 | |
1652 /* | |
1653 * No action. | |
1654 */ | |
1655 | |
1656 break; | |
1657 } | |
1658 } | |
1659 | |
1660 if (!detection_result) { | |
1661 | |
1662 add_esc_seq_char_in_rx_buffer (uart); | |
1663 add_esc_seq_char_in_rx_buffer (uart); | |
1664 | |
1665 uart->previous_time = uart->current_time; | |
1666 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1667 } | |
1668 | |
1669 break; | |
1670 | |
1671 case THREE_CHARS_DETECTED: | |
1672 | |
1673 /* | |
1674 * An escape sequence is detected if a guard period has elapsed since | |
1675 * the last receipt. Otherwise, 3 escape sequence characters are | |
1676 * written in the RX buffer. | |
1677 */ | |
1678 | |
1679 stop_guard_period_timer (uart); | |
1680 | |
1681 add_esc_seq_char_in_rx_buffer (uart); | |
1682 add_esc_seq_char_in_rx_buffer (uart); | |
1683 add_esc_seq_char_in_rx_buffer (uart); | |
1684 | |
1685 uart->previous_time = uart->current_time; | |
1686 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1687 | |
1688 break; | |
1689 } | |
1690 | |
1691 return (detection_result); | |
1692 } | |
1693 | |
1694 /******************************************************************************* | |
1695 * | |
1696 * send_break | |
1697 * | |
1698 * Purpose : This function may only called if the TX FIFO is empty. | |
1699 * Null characters are written in the TX FIFO. The number of bytes to | |
1700 * write has been defined with UAF_SetLineState. Enables the break | |
1701 * condition. | |
1702 * | |
1703 * Arguments: In : uart: Pointer on the UART structure. | |
1704 * Out: none | |
1705 * | |
1706 * Returns : Number of bytes sent. | |
1707 * | |
1708 ******************************************************************************/ | |
1709 | |
1710 static SYS_UWORD16 | |
1711 send_break (t_uart *uart) | |
1712 { | |
1713 SYS_UWORD16 bytes_in_tx_fifo; | |
1714 | |
1715 bytes_in_tx_fifo = 0; | |
1716 uart->break_in_progress = 1; | |
1717 | |
1718 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1719 /* | |
1720 * Disable sleep mode. | |
1721 */ | |
1722 | |
1723 WRITE_UART_REGISTER ( | |
1724 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1725 #endif | |
1726 | |
1727 WRITE_UART_REGISTER ( | |
1728 uart, LCR, READ_UART_REGISTER (uart, LCR) | BREAK_CONTROL); | |
1729 | |
1730 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1731 /* | |
1732 * Re-enable sleep mode. | |
1733 */ | |
1734 | |
1735 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
1736 /* | |
1737 WRITE_UART_REGISTER ( | |
1738 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
1739 | |
1740 */ | |
1741 #endif | |
1742 | |
1743 while (uart->break_length) { | |
1744 | |
1745 WRITE_UART_REGISTER (uart, THR, 0x00); | |
1746 uart->break_length--; | |
1747 bytes_in_tx_fifo++; | |
1748 } | |
1749 | |
1750 return (bytes_in_tx_fifo); | |
1751 } | |
1752 | |
1753 /******************************************************************************* | |
1754 * | |
1755 * build_rx_fifo_array | |
1756 * | |
1757 * Purpose : Reads the RX FIFO to build an array with bytes read. | |
1758 * A byte is written in this array if no error is detected. | |
1759 * | |
1760 * Arguments: In : uart: Pointer on the UART structure. | |
1761 * Out: none | |
1762 * | |
1763 * Returns : The number of bytes in RX FIFO. | |
1764 * | |
1765 ******************************************************************************/ | |
1766 | |
1767 static SYS_UWORD16 | |
1768 build_rx_fifo_array (t_uart *uart) | |
1769 { | |
1770 SYS_UWORD8 status; | |
1771 SYS_UWORD8 *first_byte; | |
1772 SYS_UWORD8 *current_byte; | |
1773 SYS_UWORD16 *bytes_in_rx_buffer; | |
1774 SYS_UWORD16 bytes_received; | |
1775 SYS_UWORD8 cbyte; | |
1776 | |
1777 volatile int x; | |
1778 | |
1779 x = 1; | |
1780 | |
1781 bytes_received = 0; | |
1782 | |
1783 | |
1784 /* | |
1785 * Switch to the other buffer. | |
1786 */ | |
1787 | |
1788 first_byte = uart->rx_buffer_used_by_rx_lisr; | |
1789 if (first_byte == &(uart->rx_fifo_byte_1[0])) { | |
1790 | |
1791 first_byte = &(uart->rx_fifo_byte_2[0]); | |
1792 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_2); | |
1793 | |
1794 } else { | |
1795 | |
1796 first_byte = &(uart->rx_fifo_byte_1[0]); | |
1797 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_1); | |
1798 } | |
1799 | |
1800 current_byte = first_byte; | |
1801 | |
1802 if (*bytes_in_rx_buffer) { | |
1803 | |
1804 | |
1805 /* The Rx buffer is not empty and is being used by HISR ! */ | |
1806 /* Hence stop the flow control */ | |
1807 stop_receiver (uart); | |
1808 | |
1809 /* | |
1810 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
1811 */ | |
1812 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
1813 | |
1814 /* Mask The Rx and interrupt */ | |
1815 | |
1816 WRITE_UART_REGISTER ( | |
1817 uart, IER, READ_UART_REGISTER (uart, IER) & | |
1818 ~(ERBI | EDSSI)); | |
1819 | |
1820 uart->rx_stopped_by_lisr = 1; | |
1821 return (bytes_received); | |
1822 | |
1823 } | |
1824 | |
1825 uart->rx_buffer_used_by_rx_lisr = first_byte; | |
1826 | |
1827 status = READ_UART_REGISTER (uart, LSR); | |
1828 | |
1829 /* | |
1830 * Build an array with the bytes contained in the RX FIFO. | |
1831 */ | |
1832 | |
1833 while (status & DR) { /* While RX FIFO is not empty... */ | |
1834 | |
1835 *current_byte = READ_UART_REGISTER (uart, RHR); | |
1836 | |
1837 /* | |
1838 * Check if a parity error or a framing error is associated with the | |
1839 * received data. If there is an error the byte is not copied into the | |
1840 * bytes array. | |
1841 */ | |
1842 | |
1843 if (status & BYTE_ERROR) { | |
1844 | |
1845 if (status & OE) | |
1846 uart->overrun_error++; | |
1847 | |
1848 if (status & PE) | |
1849 uart->parity_error++; | |
1850 | |
1851 if (status & FE) | |
1852 uart->framing_error++; | |
1853 | |
1854 /* | |
1855 * Check break detection. | |
1856 */ | |
1857 | |
1858 if (status & BI) { | |
1859 | |
1860 uart->break_received = 1; | |
1861 *(uart->state) |= | |
1862 ((1 << BRK) | (MINIMAL_BREAK_LENGTH << BRKLEN)); | |
1863 } | |
1864 | |
1865 } else /* No error */ | |
1866 current_byte++; | |
1867 | |
1868 status = READ_UART_REGISTER (uart, LSR); | |
1869 } | |
1870 | |
1871 bytes_received = (SYS_UWORD16) (current_byte - first_byte); | |
1872 *bytes_in_rx_buffer = bytes_received; | |
1873 | |
1874 /* | |
1875 * Re-switch to the other buffer if no valid character has been received. | |
1876 */ | |
1877 | |
1878 if (!bytes_received) { | |
1879 | |
1880 if (uart->rx_buffer_used_by_rx_lisr == &(uart->rx_fifo_byte_1[0])) | |
1881 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
1882 | |
1883 else | |
1884 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_1[0]); | |
1885 } | |
1886 | |
1887 if (bytes_received > uart->max_rx_fifo_level) | |
1888 uart->max_rx_fifo_level = bytes_received; | |
1889 | |
1890 return (bytes_received); | |
1891 } | |
1892 | |
1893 /******************************************************************************* | |
1894 * | |
1895 * empty_rx_fifo | |
1896 * | |
1897 * Purpose : Read the RX FIFO. | |
1898 * | |
1899 * Arguments: In : uart: Pointer on the UART structure. | |
1900 * Out: none | |
1901 * | |
1902 * Returns : none | |
1903 * | |
1904 ******************************************************************************/ | |
1905 | |
1906 static void | |
1907 empty_rx_fifo (t_uart *uart) | |
1908 { | |
1909 SYS_UWORD16 bytes_in_rx_fifo; | |
1910 volatile SYS_UWORD8 dummy_byte; | |
1911 | |
1912 bytes_in_rx_fifo = 0; | |
1913 | |
1914 while (READ_UART_REGISTER (uart, LSR) & DR) { | |
1915 | |
1916 dummy_byte = READ_UART_REGISTER (uart, RHR); | |
1917 bytes_in_rx_fifo++; | |
1918 } | |
1919 | |
1920 if (bytes_in_rx_fifo > uart->max_rx_fifo_level) | |
1921 uart->max_rx_fifo_level = bytes_in_rx_fifo; | |
1922 } | |
1923 | |
1924 /******************************************************************************* | |
1925 * | |
1926 * hisr_execute_rx_operations | |
1927 * | |
1928 * Purpose : If an escape sequence is detected or if a break in the detection | |
1929 * has occured RX FIFO bytes are written in the RX buffer. | |
1930 * If the software flow control is used bytes are analyzed to know | |
1931 * if a XON or a XOFF character is received to stop or start the | |
1932 * transmitter. | |
1933 * If a flow control is used and if the high watermark of the RX | |
1934 * buffer is reached the receiver is stopped. | |
1935 * If the RX threshold level is reached the callback mechanism is | |
1936 * activated. | |
1937 * | |
1938 * Arguments: In : none | |
1939 * Out: none | |
1940 * | |
1941 * Returns : none | |
1942 * | |
1943 ******************************************************************************/ | |
1944 | |
1945 static VOID | |
1946 hisr_execute_rx_operations (VOID) | |
1947 { | |
1948 SYS_UWORD16 bytes_free_in_rx_buffer; | |
1949 SYS_UWORD16 wrap_around_counter; | |
1950 SYS_UWORD16 bytes_in_rx_buffer; | |
1951 SYS_UWORD16 bytes_read; | |
1952 SYS_UWORD16 bytes_to_copy; | |
1953 SYS_UWORD8 *current_byte; | |
1954 SYS_UWORD8 xon_xoff_detected; | |
1955 t_uart *uart; | |
1956 | |
1957 uart = &uart_parameters; | |
1958 | |
1959 /* | |
1960 * Since new characters have been received, the sleep timer is reset then | |
1961 * restarted preventing the system to enter deep-sleep for a new period of | |
1962 * time. | |
1963 */ | |
1964 | |
1965 SER_restart_uart_sleep_timer (); | |
1966 uart_sleep_timer_enabled = 1; | |
1967 | |
1968 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
1969 uart->index_hisr = (uart->index_hisr + 1) & 0x01; /* 0 or 1 */ | |
1970 #endif | |
1971 | |
1972 xon_xoff_detected = 0; | |
1973 | |
1974 /* | |
1975 * Switch to the other buffer. | |
1976 */ | |
1977 | |
1978 current_byte = uart->rx_buffer_used_by_rx_hisr; | |
1979 if (current_byte == &(uart->rx_fifo_byte_1[0])) { | |
1980 | |
1981 current_byte = &(uart->rx_fifo_byte_2[0]); | |
1982 bytes_read = uart->bytes_in_rx_buffer_2; | |
1983 | |
1984 } else { | |
1985 | |
1986 current_byte = &(uart->rx_fifo_byte_1[0]); | |
1987 bytes_read = uart->bytes_in_rx_buffer_1; | |
1988 } | |
1989 | |
1990 uart->rx_buffer_used_by_rx_hisr = current_byte; | |
1991 | |
1992 /* | |
1993 * All bytes are copied into the RX buffer only if an escape sequence has | |
1994 * been detected or a break in the detection has occured. | |
1995 */ | |
1996 | |
1997 if (!detect_escape_sequence (uart)) { | |
1998 | |
1999 if (uart->rx_out > uart->rx_in) | |
2000 bytes_free_in_rx_buffer = (SYS_UWORD16) (uart->rx_out - uart->rx_in - 1); | |
2001 else | |
2002 bytes_free_in_rx_buffer = | |
2003 (SYS_UWORD16) (uart->buffer_size + uart->rx_out - uart->rx_in); | |
2004 | |
2005 wrap_around_counter = uart->buffer_size + 1 - | |
2006 (SYS_UWORD16) (uart->rx_in - &(uart->rx_buffer[0])); | |
2007 | |
2008 if (uart->flow_control_mode == fc_xoff) { | |
2009 | |
2010 /* | |
2011 * For SW Flow Control, need to further investigate the processing | |
2012 * in order to improve the performance of the driver, and in order | |
2013 * to avoid managing the wrap around of the circular buffer each | |
2014 * time a character is copied. | |
2015 */ | |
2016 | |
2017 while (bytes_read && bytes_free_in_rx_buffer) { | |
2018 | |
2019 /* | |
2020 * If the data received is XON or XOFF, the transmitter is | |
2021 * enabled (XON) or disabled (XOFF). | |
2022 */ | |
2023 | |
2024 if (*current_byte == uart->xoff_character) { | |
2025 | |
2026 uart->tx_stopped_by_driver = 1; | |
2027 xon_xoff_detected = 1; | |
2028 | |
2029 } else if (*current_byte == uart->xon_character) { | |
2030 | |
2031 uart->tx_stopped_by_driver = 0; | |
2032 xon_xoff_detected = 1; | |
2033 | |
2034 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2035 /* | |
2036 * Disable sleep mode. | |
2037 */ | |
2038 | |
2039 WRITE_UART_REGISTER ( | |
2040 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2041 #endif | |
2042 | |
2043 /* | |
2044 * Unmask Tx interrupt. | |
2045 */ | |
2046 | |
2047 WRITE_UART_REGISTER ( | |
2048 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2049 | |
2050 } else { | |
2051 | |
2052 *(uart->rx_in++) = *current_byte; | |
2053 | |
2054 wrap_around_counter--; | |
2055 if (!wrap_around_counter) { | |
2056 | |
2057 uart->rx_in = &(uart->rx_buffer[0]); | |
2058 wrap_around_counter = uart->buffer_size + 1; | |
2059 } | |
2060 | |
2061 bytes_free_in_rx_buffer--; | |
2062 } | |
2063 | |
2064 current_byte++; | |
2065 bytes_read--; | |
2066 } | |
2067 } else { /* No Flow Control or HW Flow Control */ | |
2068 | |
2069 /* | |
2070 * Figure out the most restricting condition. | |
2071 */ | |
2072 | |
2073 bytes_to_copy = | |
2074 Min3 (bytes_free_in_rx_buffer, wrap_around_counter, bytes_read); | |
2075 | |
2076 /* | |
2077 * Copy characters into the circular Rx buffer. | |
2078 */ | |
2079 | |
2080 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2081 | |
2082 /* | |
2083 * Update first the variables associated to blocking conditions: | |
2084 * if (bytes_read = 0) OR | |
2085 * (bytes_free_in_rx_buffer = 0) => No more characters to copy. | |
2086 */ | |
2087 | |
2088 bytes_free_in_rx_buffer -= bytes_to_copy; | |
2089 bytes_read -= bytes_to_copy; | |
2090 | |
2091 wrap_around_counter -= bytes_to_copy; | |
2092 if (!wrap_around_counter) | |
2093 uart->rx_in = &(uart->rx_buffer[0]); | |
2094 else | |
2095 uart->rx_in += bytes_to_copy; | |
2096 | |
2097 /* | |
2098 * Check if there are still some characters to copy. | |
2099 */ | |
2100 | |
2101 if (bytes_read && bytes_free_in_rx_buffer) { | |
2102 | |
2103 /* | |
2104 * Update the remaining variables and figure out again the | |
2105 * most restricting condition. Since (bytes_read = 0) and | |
2106 * (bytes_free_in_rx_buffer = 0) are blocking conditions, if | |
2107 * we reach that point it means that the wrap around condition | |
2108 * has just occurred and it is not needed to manage it again. | |
2109 */ | |
2110 | |
2111 current_byte += bytes_to_copy; | |
2112 bytes_to_copy = Min (bytes_read, bytes_free_in_rx_buffer); | |
2113 | |
2114 /* | |
2115 * Copy characters into the circular Rx buffer and update | |
2116 * current pointer. | |
2117 */ | |
2118 | |
2119 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2120 | |
2121 uart->rx_in += bytes_to_copy; | |
2122 | |
2123 /* | |
2124 * bytes_free_in_rx_buffer not updated since not used anymore. | |
2125 */ | |
2126 bytes_read -= bytes_to_copy; | |
2127 | |
2128 } | |
2129 else { | |
2130 bytes_read = 0; | |
2131 } | |
2132 } /* end if (uart->flow_control_mode == fc_xoff) */ | |
2133 | |
2134 | |
2135 /* | |
2136 * If the high watermark is reached, RTS is activated or XOFF is | |
2137 * sent according to the flow control mode. | |
2138 */ | |
2139 | |
2140 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
2141 | |
2142 if ((uart->flow_control_mode != fc_none) && | |
2143 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
2144 | |
2145 /* | |
2146 * Check if receipt must be stopped. | |
2147 */ | |
2148 | |
2149 if (!uart->rx_stopped_by_driver) { | |
2150 | |
2151 uart->rx_stopped_by_driver = 1; | |
2152 if (!uart->rx_stopped_by_application) | |
2153 stop_receiver (uart); | |
2154 } | |
2155 } | |
2156 | |
2157 /* | |
2158 * If a reading was suspended or if the callback function is installed, | |
2159 * it is called if one of these conditions is fulfiled: | |
2160 * - the RX threshold level is reached, | |
2161 * - a break has been detected, | |
2162 */ | |
2163 | |
2164 if ((!uart->rd_call_from_hisr_in_progress) && | |
2165 (uart->reading_suspended || | |
2166 (uart->rd_call_setup == rm_reInstall))) { | |
2167 | |
2168 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
2169 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
2170 uart->dtr_change_detected[uart->index_hisr] || | |
2171 #endif | |
2172 uart->break_received || | |
2173 xon_xoff_detected) { | |
2174 | |
2175 | |
2176 uart->rd_call_from_hisr_in_progress = 1; | |
2177 update_reading_callback (uart, 3); /* 3: call from Rx HISR. */ | |
2178 | |
2179 uart->reading_suspended = 0; | |
2180 uart->break_received = 0; | |
2181 uart->esc_seq_received = 0; | |
2182 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
2183 uart->dtr_change_detected[uart->index_hisr] = 0; | |
2184 #endif | |
2185 } | |
2186 } | |
2187 | |
2188 } | |
2189 | |
2190 | |
2191 | |
2192 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2193 | |
2194 /* Mask The Rx and Modem status interrupt */ | |
2195 WRITE_UART_REGISTER ( | |
2196 uart, IER, READ_UART_REGISTER (uart, IER) & | |
2197 ~(ERBI | EDSSI)); | |
2198 | |
2199 if ((uart->rx_buffer_used_by_rx_hisr) == &(uart->rx_fifo_byte_1[0])) { | |
2200 | |
2201 uart->bytes_in_rx_buffer_1 = 0; | |
2202 | |
2203 } else { | |
2204 | |
2205 uart->bytes_in_rx_buffer_2 = 0; | |
2206 } | |
2207 | |
2208 | |
2209 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2210 | |
2211 /* Unmask The Rx and Modem status interrupt*/ | |
2212 WRITE_UART_REGISTER ( | |
2213 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2214 (ERBI | EDSSI)); | |
2215 | |
2216 if(uart->rx_stopped_by_lisr ) { | |
2217 if (!uart->rx_stopped_by_driver) { | |
2218 | |
2219 | |
2220 uart->rx_stopped_by_lisr = 0; | |
2221 | |
2222 /* | |
2223 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2224 */ | |
2225 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2226 | |
2227 | |
2228 /* UnMask The Rx interrupt */ | |
2229 WRITE_UART_REGISTER ( | |
2230 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2231 (ERBI | EDSSI)); | |
2232 | |
2233 start_receiver (uart); | |
2234 | |
2235 } | |
2236 } | |
2237 | |
2238 } | |
2239 | |
2240 /******************************************************************************* | |
2241 * | |
2242 * hisr_execute_v24_operations | |
2243 * | |
2244 * Purpose : The user's function is called if all conditions to call it are | |
2245 * fulfiled. | |
2246 * | |
2247 * Arguments: In : none | |
2248 * Out: none | |
2249 * | |
2250 * Returns : none | |
2251 * | |
2252 ******************************************************************************/ | |
2253 | |
2254 static VOID | |
2255 hisr_execute_v24_operations (VOID) | |
2256 { | |
2257 t_uart *uart; | |
2258 | |
2259 uart = &uart_parameters; | |
2260 | |
2261 /* | |
2262 * If a reading was suspended or if the callback function is installed, | |
2263 * it is called. | |
2264 */ | |
2265 | |
2266 if ((!DRIVER_DISABLED (uart)) && | |
2267 (!uart->rd_call_from_hisr_in_progress) && | |
2268 (uart->reading_suspended || (uart->rd_call_setup == rm_reInstall))) { | |
2269 | |
2270 uart->rd_call_from_hisr_in_progress = 1; | |
2271 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
2272 uart->reading_suspended = 0; | |
2273 uart->break_received = 0; | |
2274 uart->esc_seq_received = 0; | |
2275 } | |
2276 | |
2277 } | |
2278 | |
2279 /******************************************************************************* | |
2280 * | |
2281 * hisr_execute_tx_operations | |
2282 * | |
2283 * Purpose : Writes bytes from the TX buffer to the TX FIFO. | |
2284 * The user's function is called if all conditions to call it are | |
2285 * fulfiled. | |
2286 * | |
2287 * Arguments: In : none | |
2288 * Out: none | |
2289 * | |
2290 * Returns : none | |
2291 * | |
2292 ******************************************************************************/ | |
2293 | |
2294 static VOID | |
2295 hisr_execute_tx_operations (VOID) | |
2296 { | |
2297 SYS_UWORD16 bytes_in_tx_buffer; | |
2298 SYS_UWORD16 bytes_in_tx_fifo; | |
2299 SYS_UWORD16 wrap_around_counter; | |
2300 SYS_UWORD16 bytes_to_write; | |
2301 t_uart *uart; | |
2302 int counter; | |
2303 | |
2304 | |
2305 uart = &uart_parameters; | |
2306 | |
2307 /* | |
2308 * A TX interrupt may have occured during the previous TX HISR. This case | |
2309 * may appear when a HISR having a higher priority has been activated when | |
2310 * the TX HISR was activated. When the next TX HISR is activated, the TX | |
2311 * FIFO may not be empty. Nothing is done until a TX interrupt will occur. | |
2312 * The RX HISR will be activated again and the TX FIFO will be empty. | |
2313 */ | |
2314 | |
2315 if (READ_UART_REGISTER (uart, LSR) & THRE) { | |
2316 | |
2317 bytes_in_tx_fifo = 0; | |
2318 | |
2319 /* | |
2320 * A request to send a XON/XOFF character may have been done by the | |
2321 * RX interrupt handler. The byte can be written because we are sure | |
2322 * that the TX FIFO is not full. | |
2323 */ | |
2324 | |
2325 if (uart->send_xon_xoff) { | |
2326 | |
2327 WRITE_UART_REGISTER (uart, THR, uart->xon_xoff_to_send); | |
2328 uart->send_xon_xoff = 0; | |
2329 bytes_in_tx_fifo++; | |
2330 } | |
2331 | |
2332 if ((!uart->tx_stopped_by_application) && | |
2333 (!uart->tx_stopped_by_driver)) { | |
2334 | |
2335 bytes_in_tx_buffer = get_bytes_in_tx_buffer (uart); | |
2336 wrap_around_counter = | |
2337 uart->buffer_size + 1 - (SYS_UWORD16) (uart->tx_out - | |
2338 &(uart->tx_buffer[0])); | |
2339 | |
2340 /* | |
2341 * Figure out the most restricting condition. | |
2342 */ | |
2343 | |
2344 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2345 /* | |
2346 * Loading of only (FIFO_SIZE - 1) characters in the Tx FIFO to | |
2347 * avoid the generation of a spurious Tx FIFO almost empty | |
2348 * interrupt (Ulysse bug report #35). | |
2349 */ | |
2350 | |
2351 bytes_to_write = | |
2352 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2353 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2354 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2355 /* | |
2356 * Bug corrected on Calypso rev. A, rev. B, C035, Ulysse C035, | |
2357 * Calypso Lite & Calypso+. | |
2358 */ | |
2359 | |
2360 bytes_to_write = | |
2361 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2362 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2363 #endif | |
2364 | |
2365 /* | |
2366 * Write characters into the Tx FIFO. | |
2367 */ | |
2368 | |
2369 for (counter = 0; counter < bytes_to_write; counter++) | |
2370 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2371 | |
2372 /* | |
2373 * Update the variables associated to blocking conditions: | |
2374 * if (bytes_in_tx_buffer = 0) OR | |
2375 * (bytes_in_tx_fifo = FIFO_SIZE) => No more characters to copy. | |
2376 */ | |
2377 | |
2378 bytes_in_tx_buffer -= bytes_to_write; | |
2379 bytes_in_tx_fifo += bytes_to_write; | |
2380 | |
2381 wrap_around_counter -= bytes_to_write; | |
2382 if (!wrap_around_counter) | |
2383 uart->tx_out = &(uart->tx_buffer[0]); | |
2384 | |
2385 /* | |
2386 * Check if there are still some characters to write. | |
2387 */ | |
2388 | |
2389 if (bytes_in_tx_buffer && | |
2390 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2391 (bytes_in_tx_fifo < (FIFO_SIZE - 1))) { | |
2392 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2393 (bytes_in_tx_fifo < FIFO_SIZE)) { | |
2394 #endif | |
2395 | |
2396 /* | |
2397 * Figure out again the most restricting condition. Since | |
2398 * (bytes_in_tx_buffer = 0) and (bytes_in_tx_fifo = FIFO_SIZE) | |
2399 * are blocking conditions, if we reach that point it means | |
2400 * that the wrap around condition has just occurred and it is | |
2401 * not needed to manage it again. | |
2402 */ | |
2403 | |
2404 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2405 bytes_to_write = | |
2406 Min (bytes_in_tx_buffer, | |
2407 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2408 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2409 bytes_to_write = | |
2410 Min (bytes_in_tx_buffer, | |
2411 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2412 #endif | |
2413 | |
2414 /* | |
2415 * Write characters into the Tx FIFO and update associated | |
2416 * variables. | |
2417 */ | |
2418 | |
2419 for (counter = 0; counter < bytes_to_write; counter++) | |
2420 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2421 | |
2422 bytes_in_tx_buffer += bytes_to_write; | |
2423 bytes_in_tx_fifo += bytes_to_write; | |
2424 } | |
2425 | |
2426 /* | |
2427 * If a writing was suspended or if the callback function is | |
2428 * installed, it is called if the TX threshold level is reached. | |
2429 */ | |
2430 | |
2431 if ((!DRIVER_DISABLED (uart)) && | |
2432 (!uart->wr_call_from_hisr_in_progress) && | |
2433 (bytes_in_tx_buffer <= uart->tx_threshold_level) && | |
2434 ((uart->wr_call_setup == rm_reInstall) || | |
2435 uart->writing_suspended)) { | |
2436 | |
2437 uart->writing_suspended = 0; | |
2438 | |
2439 uart->wr_call_from_hisr_in_progress = 1; | |
2440 update_writing_callback (uart, 1); /* 1: call from HISR. */ | |
2441 } | |
2442 } /* end if ((!uart->tx_stopped_by_application) && */ | |
2443 /* (!uart->tx_stopped_by_driver)) */ | |
2444 | |
2445 if (bytes_in_tx_fifo) | |
2446 | |
2447 /* | |
2448 * Unmask Tx interrupt. | |
2449 */ | |
2450 | |
2451 WRITE_UART_REGISTER ( | |
2452 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2453 | |
2454 else { | |
2455 | |
2456 if ((!bytes_in_tx_fifo) && (uart->break_to_send)) | |
2457 bytes_in_tx_fifo = send_break (uart); | |
2458 } | |
2459 | |
2460 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2461 /* | |
2462 * Re-enable the sleep mode. | |
2463 */ | |
2464 | |
2465 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
2466 /* | |
2467 WRITE_UART_REGISTER ( | |
2468 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
2469 | |
2470 */ | |
2471 #endif | |
2472 } | |
2473 } | |
2474 | |
2475 /******************************************************************************* | |
2476 * | |
2477 * read_rx_fifo | |
2478 * | |
2479 * Purpose : Reads the RX FIFO. If the driver is enabled bytes are written in | |
2480 * an array to be analyzed by the RX HISR. | |
2481 * | |
2482 * Arguments: In : uart: Pointer on the UART structure. | |
2483 * Out: none | |
2484 * | |
2485 * Returns : none | |
2486 * | |
2487 ******************************************************************************/ | |
2488 | |
2489 static void | |
2490 read_rx_fifo (t_uart *uart) | |
2491 { | |
2492 | |
2493 /* | |
2494 * If the driver is disabled the RX FIFO is read to acknoledge the | |
2495 * interrupt else bytes received are written into an array which will be | |
2496 * analyzed from the RX HISR. | |
2497 */ | |
2498 | |
2499 if (DRIVER_DISABLED (uart)) | |
2500 empty_rx_fifo (uart); | |
2501 | |
2502 else if (build_rx_fifo_array (uart)){ | |
2503 (void) NU_Activate_HISR (&(uart->rx_hisr_ctrl_block)); | |
2504 | |
2505 } | |
2506 | |
2507 | |
2508 } | |
2509 | |
2510 /******************************************************************************* | |
2511 * | |
2512 * check_v24_input_lines | |
2513 * | |
2514 * Purpose : Check the V.24 input lines. According to the states of the input | |
2515 * lines and to the flow control mode selected, the transmitter is | |
2516 * enabled or disabled. The reading callback function is called if | |
2517 * it is installed and if all conditions are fulfiled. | |
2518 * | |
2519 * Arguments: In : uart: Pointer on the UART structure. | |
2520 * Out: none | |
2521 * | |
2522 * Returns : none | |
2523 * | |
2524 ******************************************************************************/ | |
2525 | |
2526 static void | |
2527 check_v24_input_lines (t_uart *uart) | |
2528 { | |
2529 SYS_BOOL v24_input_line_changed; | |
2530 volatile SYS_UWORD8 modem_status; | |
2531 | |
2532 modem_status = READ_UART_REGISTER (uart, MSR); | |
2533 v24_input_line_changed = 0; | |
2534 | |
2535 if (modem_status & DELTA_CTS) { | |
2536 | |
2537 v24_input_line_changed = 1; | |
2538 | |
2539 if (modem_status & MCTS) | |
2540 uart->rts_level = 0; | |
2541 else | |
2542 uart->rts_level = 1; | |
2543 } | |
2544 | |
2545 #if (CHIPSET == 12) | |
2546 else if (modem_status & DELTA_DSR) { | |
2547 v24_input_line_changed = 1; | |
2548 | |
2549 if (modem_status & MDSR) | |
2550 { | |
2551 uart->dtr_level = 0; | |
2552 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
2553 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); /* switch back to autobaud */ | |
2554 } | |
2555 else | |
2556 uart->dtr_level = 1; | |
2557 | |
2558 /* | |
2559 * The reading callback function has to be called. But bytes received before | |
2560 * the change of state of DTR must be copied into the RX buffer before to | |
2561 * call it. | |
2562 */ | |
2563 | |
2564 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
2565 | |
2566 /* | |
2567 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
2568 * HISR will be activated. | |
2569 */ | |
2570 | |
2571 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
2572 uart->dtr_change_detected[uart->index_it] = 1; | |
2573 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
2574 read_rx_fifo (uart); | |
2575 | |
2576 } else | |
2577 v24_input_line_changed = 1; | |
2578 } | |
2579 #endif | |
2580 | |
2581 /* | |
2582 * When the hardware flow control is selected, if the RS 232 input signal is | |
2583 * deactivated (low), the transmitter is stopped. | |
2584 */ | |
2585 | |
2586 if (uart->flow_control_mode == fc_rts) { | |
2587 | |
2588 if (uart->rts_level) { | |
2589 uart->tx_stopped_by_driver = 1; | |
2590 } | |
2591 | |
2592 else { | |
2593 | |
2594 uart->tx_stopped_by_driver = 0; | |
2595 LowGPIO(1); | |
2596 | |
2597 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2598 /* | |
2599 * Disable sleep mode. | |
2600 */ | |
2601 | |
2602 WRITE_UART_REGISTER ( | |
2603 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2604 #endif | |
2605 | |
2606 /* | |
2607 * Unmask Tx interrupt. | |
2608 */ | |
2609 | |
2610 WRITE_UART_REGISTER ( | |
2611 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2612 | |
2613 } | |
2614 } | |
2615 | |
2616 if (v24_input_line_changed) | |
2617 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
2618 } | |
2619 | |
2620 /******************************************************************************* | |
2621 * | |
2622 * fill_tx_fifo | |
2623 * | |
2624 * Purpose : If the TX buffer is not empty, and if there is no break in | |
2625 * progress, bytes are written into the TX FIFO until the TX FIFO is | |
2626 * full or the TX buffer is empty. Else, if there is a break to send | |
2627 * an all 0s character is written into the TX FIFO and a break is | |
2628 * declared in progress to avoid to fill the TX FIFO on the next | |
2629 * interrupt. | |
2630 * When the TX FIFO is empty and if a break is in progress, the break | |
2631 * length is programmed: all 0s characters are written into the TX | |
2632 * FIFO. The number of bytes has been defined previously with the | |
2633 * UAF_SetLineState function. The break condition is enabled. | |
2634 * When the TX FIFO and the transmitter shift register (TSR) are both | |
2635 * empty and if a break is in progress, the break condition is | |
2636 * disabled. | |
2637 * When bytes are written from the TX buffer to the TX FIFO, the | |
2638 * writing callback function is called if it is installed and if all | |
2639 * conditions are fulfiled. | |
2640 * | |
2641 * Arguments: In : uart: Pointer on the UART structure. | |
2642 * Out: none | |
2643 * | |
2644 * Returns : none | |
2645 * | |
2646 ******************************************************************************/ | |
2647 | |
2648 static void | |
2649 fill_tx_fifo (t_uart *uart) | |
2650 { | |
2651 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2652 /* | |
2653 * Disable sleep mode. | |
2654 */ | |
2655 | |
2656 WRITE_UART_REGISTER ( | |
2657 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2658 #endif | |
2659 | |
2660 /* | |
2661 * Mask Tx interrupt. | |
2662 */ | |
2663 | |
2664 WRITE_UART_REGISTER ( | |
2665 uart, IER, READ_UART_REGISTER (uart, IER) & ~ETBEI); | |
2666 | |
2667 /* | |
2668 * If a break is in progress, bytes of the TX buffer are not written into | |
2669 * the TX FIFO. | |
2670 */ | |
2671 | |
2672 if (!uart->break_in_progress) | |
2673 (void) NU_Activate_HISR (&(uart->tx_hisr_ctrl_block)); | |
2674 | |
2675 else { | |
2676 | |
2677 /* | |
2678 * The break HISR is activated and the break condition is cleared. | |
2679 */ | |
2680 | |
2681 WRITE_UART_REGISTER ( | |
2682 uart, LCR, READ_UART_REGISTER (uart, LCR) & ~BREAK_CONTROL); | |
2683 | |
2684 (void) NU_Activate_HISR (&(uart->break_hisr_ctrl_block)); | |
2685 } | |
2686 } | |
2687 | |
2688 /******************************************************************************* | |
2689 * | |
2690 * UAF_Init | |
2691 * | |
2692 * Purpose : Initializes the UART hardware and installs interrupt handlers. | |
2693 * The parameters are set to the default values: | |
2694 * - 19200 baud, | |
2695 * - 8 bits / character, | |
2696 * - no parity, | |
2697 * - 1 stop bit, | |
2698 * - no flow control. | |
2699 * All functionalities of the UART driver are disabled. | |
2700 * | |
2701 * Arguments: In : uartNo: Used UART. | |
2702 * Out: none | |
2703 * | |
2704 * Returns : FD_OK : Successful operation. | |
2705 * FD_NOT_SUPPORTED: Wrong UART number. | |
2706 * FD_INTERNAL_ERR : Internal problem. | |
2707 * | |
2708 ******************************************************************************/ | |
2709 | |
2710 T_FDRET | |
2711 UAF_Init (T_fd_UartId uartNo) | |
2712 { | |
2713 t_uart *uart; | |
2714 volatile SYS_UWORD8 status; | |
2715 | |
2716 /* | |
2717 * Check UART number. | |
2718 * A return is used to simplify the code. | |
2719 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
2720 * flow control is not supported. | |
2721 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
2722 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
2723 */ | |
2724 | |
2725 if (uartNo != UAF_UART_1) | |
2726 return (FD_NOT_SUPPORTED); | |
2727 | |
2728 uart = &uart_parameters; | |
2729 | |
2730 /* | |
2731 * Create the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
2732 * A return is used to simplify the code if an error occurs. | |
2733 * All stacks are entirely filled with the pattern 0xFE. | |
2734 */ | |
2735 | |
2736 memset (&(uart->rx_hisr_stack[0]), 0xFE, RX_HISR_STACK_SIZE); | |
2737 | |
2738 if (NU_Create_HISR (&(uart->rx_hisr_ctrl_block), | |
2739 "UAF_Rx", | |
2740 hisr_execute_rx_operations, | |
2741 RX_HISR_PRIORITY, | |
2742 &(uart->rx_hisr_stack[0]), | |
2743 RX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2744 | |
2745 return (FD_INTERNAL_ERR); | |
2746 | |
2747 memset (&(uart->tx_hisr_stack[0]), 0xFE, TX_HISR_STACK_SIZE); | |
2748 | |
2749 if (NU_Create_HISR (&(uart->tx_hisr_ctrl_block), | |
2750 "UAF_Tx", | |
2751 hisr_execute_tx_operations, | |
2752 TX_HISR_PRIORITY, | |
2753 &(uart->tx_hisr_stack[0]), | |
2754 TX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2755 | |
2756 return (FD_INTERNAL_ERR); | |
2757 | |
2758 memset (&(uart->v24_hisr_stack[0]), 0xFE, V24_HISR_STACK_SIZE); | |
2759 | |
2760 if (NU_Create_HISR (&(uart->v24_hisr_ctrl_block), | |
2761 "UAF_V24", | |
2762 hisr_execute_v24_operations, | |
2763 V24_HISR_PRIORITY, | |
2764 &(uart->v24_hisr_stack[0]), | |
2765 V24_HISR_STACK_SIZE) != NU_SUCCESS) | |
2766 | |
2767 return (FD_INTERNAL_ERR); | |
2768 | |
2769 /* | |
2770 * Create the HISR used to send a break. | |
2771 * A return is used to simplify the code if an error occurs. | |
2772 * The stack is entirely filled with the pattern 0xFE. | |
2773 */ | |
2774 | |
2775 memset (&(uart->break_hisr_stack[0]), 0xFE, BREAK_HISR_STACK_SIZE); | |
2776 | |
2777 if (NU_Create_HISR (&(uart->break_hisr_ctrl_block), | |
2778 "UAF_Brk", | |
2779 hisr_start_break, | |
2780 BREAK_HISR_PRIORITY, | |
2781 &(uart->break_hisr_stack[0]), | |
2782 BREAK_HISR_STACK_SIZE) != NU_SUCCESS) | |
2783 | |
2784 return (FD_INTERNAL_ERR); | |
2785 | |
2786 /* | |
2787 * Create a timer used in the break HISR. | |
2788 * A return is used to simplify the code if an error occurs. | |
2789 */ | |
2790 | |
2791 if (NU_Create_Timer (&(uart->break_timer_ctrl_block), | |
2792 "Break", | |
2793 stop_break, | |
2794 0, /* Parameter supplied to the routine: not used. */ | |
2795 0, /* This parameter is set when the timer is reset. */ | |
2796 0, /* The timer expires once. */ | |
2797 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2798 | |
2799 return (FD_INTERNAL_ERR); | |
2800 | |
2801 /* | |
2802 * Create a timer used in the detection of the escape sequence. | |
2803 * A return is used to simplify the code if an error occurs. | |
2804 */ | |
2805 | |
2806 if (NU_Create_Timer (&(uart->guard_period_timer_ctrl_block), | |
2807 "Esc seq", | |
2808 analyze_guard_period_timer_expiration, | |
2809 0, /* Parameter supplied to the routine: not used. */ | |
2810 0, /* This parameter is set when the timer is reset. */ | |
2811 0, /* The timer expires once. */ | |
2812 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2813 | |
2814 return (FD_INTERNAL_ERR); | |
2815 | |
2816 /* | |
2817 * These data are used to send a break. | |
2818 * A character has: 8 data bits + 1 start bit + 1 stop bit = 10 bits. | |
2819 */ | |
2820 | |
2821 uart->baudrate = baudrate_value[FD_BAUD_19200]; | |
2822 uart->autobauding = 0; | |
2823 uart->bits_per_char = 10; | |
2824 | |
2825 /* | |
2826 * UART base address. | |
2827 */ | |
2828 | |
2829 uart->base_address = base_address[uartNo]; | |
2830 | |
2831 /* | |
2832 * Select the current array used to store received bytes. | |
2833 */ | |
2834 | |
2835 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
2836 uart->rx_buffer_used_by_rx_hisr = &(uart->rx_fifo_byte_2[0]); | |
2837 | |
2838 /* | |
2839 * RX and TX buffers. | |
2840 */ | |
2841 | |
2842 uart->buffer_size = FD_MAX_BUFFER_SIZE; | |
2843 uart->rx_threshold_level = 1; | |
2844 uart->tx_threshold_level = 0; | |
2845 uart->rx_in = &(uart->rx_buffer[0]); | |
2846 uart->rx_out = &(uart->rx_buffer[0]); | |
2847 uart->tx_in = &(uart->tx_buffer[0]); | |
2848 uart->tx_out = &(uart->tx_buffer[0]); | |
2849 | |
2850 /* | |
2851 * Escape sequence. | |
2852 */ | |
2853 | |
2854 uart->esc_seq_modified = 0; | |
2855 uart->esc_seq_detection_state = INITIALIZATION; | |
2856 uart->esc_seq_character = DEFAULT_ESC_SEQ_CHARACTER; | |
2857 uart->guard_period = CONVERT_TIME_IN_TDMA ( | |
2858 DEFAULT_GUARD_PERIOD); | |
2859 | |
2860 /* | |
2861 * Flow control. | |
2862 */ | |
2863 | |
2864 uart->flow_control_mode = fc_none; | |
2865 uart->send_xon_xoff = 0; | |
2866 uart->rx_stopped_by_application = 1; | |
2867 uart->rx_stopped_by_driver = 0; | |
2868 uart->rx_stopped_by_lisr = 0; | |
2869 uart->tx_stopped_by_application = 1; | |
2870 uart->tx_stopped_by_driver = 0; | |
2871 | |
2872 /* | |
2873 * Break. | |
2874 */ | |
2875 | |
2876 uart->break_received = 0; | |
2877 uart->break_to_send = 0; | |
2878 uart->break_in_progress = 0; | |
2879 | |
2880 /* | |
2881 * Callback (UAF_ReadData and UAF_WriteData). | |
2882 */ | |
2883 | |
2884 uart->esc_seq_received = 0; | |
2885 | |
2886 uart->reading_suspended = 0; | |
2887 uart->writing_suspended = 0; | |
2888 uart->rd_call_from_hisr_in_progress = 0; | |
2889 uart->wr_call_from_hisr_in_progress = 0; | |
2890 uart->rd_call_setup = rm_noInstall; | |
2891 uart->wr_call_setup = rm_noInstall; | |
2892 | |
2893 /* | |
2894 * State defined in UAF_GetLineState. | |
2895 */ | |
2896 | |
2897 uart->state_1 = 0; | |
2898 uart->state_2 = 0; | |
2899 uart->state = &(uart->state_1); | |
2900 | |
2901 /* | |
2902 * Errors counters. | |
2903 */ | |
2904 | |
2905 uart->framing_error = 0; | |
2906 uart->parity_error = 0; | |
2907 uart->overrun_error = 0; | |
2908 uart->spurious_interrupts = 0; | |
2909 | |
2910 uart->max_rx_fifo_level = 0; | |
2911 | |
2912 /* | |
2913 * Mask all interrupts causes and disable sleep mode and low power mode. | |
2914 */ | |
2915 | |
2916 WRITE_UART_REGISTER (uart, IER, 0x00); | |
2917 | |
2918 /* | |
2919 * Reset UART mode configuration. | |
2920 */ | |
2921 | |
2922 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
2923 IR_SLEEP_DISABLED | | |
2924 SIR_TX_WITHOUT_ACREG2 | | |
2925 FRAME_LENGTH_METHOD); | |
2926 | |
2927 /* | |
2928 * FIFO configuration. | |
2929 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
2930 */ | |
2931 | |
2932 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
2933 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
2934 | |
2935 /* | |
2936 * Select the word length, the number of stop bits , the parity and set | |
2937 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
2938 */ | |
2939 | |
2940 WRITE_UART_REGISTER (uart, LCR, WLS_8 | DLAB); | |
2941 | |
2942 /* | |
2943 * Program the trigger levels. | |
2944 * MCR[6] must be set to 1. | |
2945 */ | |
2946 | |
2947 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
2948 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
2949 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
2950 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
2951 | |
2952 /* | |
2953 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
2954 */ | |
2955 | |
2956 WRITE_UART_REGISTER ( | |
2957 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
2958 | |
2959 /* | |
2960 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
2961 * are written to or they are not programmed. | |
2962 * FCR is a write-only register. It will not be modified. | |
2963 */ | |
2964 | |
2965 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
2966 RX_FIFO_RESET | /* self cleared */ | |
2967 TX_FIFO_RESET); /* self cleared */ | |
2968 | |
2969 /* | |
2970 * Program the baud generator. | |
2971 */ | |
2972 | |
2973 WRITE_UART_REGISTER (uart, DLL, dll[FD_BAUD_19200]); | |
2974 WRITE_UART_REGISTER (uart, DLM, dlh[FD_BAUD_19200]); | |
2975 | |
2976 /* | |
2977 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2978 */ | |
2979 | |
2980 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2981 | |
2982 /* | |
2983 * Select UART mode. | |
2984 */ | |
2985 | |
2986 WRITE_UART_REGISTER (uart, MDR1, UART_MODE | | |
2987 IR_SLEEP_DISABLED | | |
2988 SIR_TX_WITHOUT_ACREG2 | | |
2989 FRAME_LENGTH_METHOD); | |
2990 | |
2991 /* | |
2992 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
2993 */ | |
2994 | |
2995 status = READ_UART_REGISTER (uart, MSR); | |
2996 | |
2997 if (status & MCTS) | |
2998 uart->rts_level = 0; | |
2999 else | |
3000 uart->rts_level = 1; | |
3001 | |
3002 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
3003 /* | |
3004 * On C & D-Sample, 2 I/O are used to control DCD and DTR on UART Modem. | |
3005 * DCD: I/O 2 (output) | |
3006 * DTR: I/O 3 (input) | |
3007 */ | |
3008 | |
3009 #define EXTENDED_MCU_REG (0xFFFEF006) /* Extended MCU register */ | |
3010 #define ASIC_CONFIG_REG (0xFFFEF008) /* Asic Configuration register */ | |
3011 | |
3012 #define IO_DTR (10) /* I/O 3; bit 10 of Asic Configuration register */ | |
3013 #define IO_DCD ( 6) /* I/O 2; bit 6 of Extended MCU register */ | |
3014 | |
3015 /* | |
3016 * Select I/O for DCD and configure it as output. | |
3017 * DCD should start HIGH (not asserted). | |
3018 */ | |
3019 | |
3020 *((volatile SYS_UWORD16 *) EXTENDED_MCU_REG) &= ~(1 << IO_DCD); | |
3021 AI_ConfigBitAsOutput (ARMIO_DCD); | |
3022 AI_SetBit (ARMIO_DCD); | |
3023 | |
3024 /* | |
3025 * Select I/O for DTR and configure it as input. | |
3026 * An interrupt is used to detect a change of state of DTR. Falling edge | |
3027 * or rising edge is selected according to the state of DTR. | |
3028 */ | |
3029 | |
3030 *((volatile SYS_UWORD16 *) ASIC_CONFIG_REG) &= ~(1 << IO_DTR); | |
3031 AI_ConfigBitAsInput (ARMIO_DTR); | |
3032 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3033 | |
3034 if (uart->dtr_level) | |
3035 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3036 else | |
3037 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3038 | |
3039 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3040 | |
3041 /* | |
3042 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3043 * The circular buffer does not need to be initialized. | |
3044 */ | |
3045 | |
3046 uart->index_it = 0; | |
3047 uart->index_hisr = 0; | |
3048 #elif (CHIPSET == 12) | |
3049 /* | |
3050 * DCD and DTR are directly handled by Calypso+. | |
3051 * Force DCD pin to HIGH | |
3052 */ | |
3053 | |
3054 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
3055 | |
3056 /* | |
3057 * Read the state of DTR (DTR on RS232, DSR on chipset). | |
3058 */ | |
3059 | |
3060 status = READ_UART_REGISTER (uart, MSR); | |
3061 | |
3062 if (status & MDSR) | |
3063 uart->dtr_level = 0; | |
3064 else | |
3065 uart->dtr_level = 1; | |
3066 | |
3067 /* | |
3068 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3069 * The circular buffer does not need to be initialized. | |
3070 */ | |
3071 | |
3072 uart->index_it = 0; | |
3073 uart->index_hisr = 0; | |
3074 #endif /* BOARD == 8, 9, 40 or 41, CHIPSET == 12 */ | |
3075 | |
3076 /* | |
3077 * Unmask RX interrupt and the modem status interrupt. | |
3078 */ | |
3079 | |
3080 WRITE_UART_REGISTER (uart, IER, ERBI | EDSSI); | |
3081 | |
3082 #if (CHIPSET == 12) | |
3083 /* | |
3084 * Unmask DSR interrupt in order to detect a change of state of DTR. | |
3085 */ | |
3086 | |
3087 ENABLE_DSR_INTERRUPT (uart); | |
3088 #endif | |
3089 | |
3090 return (FD_OK); | |
3091 } | |
3092 | |
3093 /******************************************************************************* | |
3094 * | |
3095 * UAF_Enable | |
3096 * | |
3097 * Purpose : The functionalities of the UART driver are disabled or enabled. | |
3098 * In the deactivated state, all information about the communication | |
3099 * parameters should be stored and recalled if the driver is again | |
3100 * enabled. When the driver is enabled the RX and TX buffers are | |
3101 * cleared. | |
3102 * | |
3103 * Arguments: In : uartNo: Used UART. | |
3104 * : enable: 1: enable the driver | |
3105 * 0: disable the driver | |
3106 * Out: none | |
3107 * | |
3108 * Returns : FD_OK : Successful operation. | |
3109 * FD_NOT_SUPPORTED: Wrong UART number. | |
3110 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3111 * | |
3112 ******************************************************************************/ | |
3113 | |
3114 T_FDRET | |
3115 UAF_Enable (T_fd_UartId uartNo, | |
3116 SYS_BOOL enable) | |
3117 { | |
3118 t_uart *uart; | |
3119 | |
3120 /* | |
3121 * Check UART number. | |
3122 * A return is used to simplify the code. | |
3123 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3124 * flow control is not supported. | |
3125 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3126 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3127 */ | |
3128 | |
3129 if (uartNo != UAF_UART_1) | |
3130 return (FD_NOT_SUPPORTED); | |
3131 | |
3132 /* | |
3133 * There is no case where FD_INTERNAL_ERR may be returned. | |
3134 */ | |
3135 | |
3136 uart = &uart_parameters; | |
3137 | |
3138 if (enable) { | |
3139 | |
3140 uart->rx_stopped_by_driver = 0; | |
3141 | |
3142 ENABLE_DRIVER (uart); | |
3143 start_receiver (uart); | |
3144 | |
3145 } else { | |
3146 | |
3147 DISABLE_DRIVER (uart); | |
3148 stop_receiver (uart); | |
3149 | |
3150 uart->tx_in = &(uart->tx_buffer[0]); | |
3151 uart->rx_in = &(uart->rx_buffer[0]); | |
3152 uart->tx_out = uart->tx_in; | |
3153 uart->rx_out = uart->rx_in; | |
3154 } | |
3155 | |
3156 return (FD_OK); | |
3157 } | |
3158 | |
3159 /******************************************************************************* | |
3160 * | |
3161 * UAF_SetComPar | |
3162 * | |
3163 * Purpose : Sets up the communication parameters: baud rate, bits per | |
3164 * character, number of stop bits, parity. | |
3165 * | |
3166 * Arguments: In : uartNo : Used UART. | |
3167 * baudrate: Used baud rate. | |
3168 * bpc : Used bits per character. | |
3169 * sb : Used stop bits. | |
3170 * parity : Used parity. | |
3171 * Out: none | |
3172 * | |
3173 * Returns : FD_OK : Successful operation. | |
3174 * FD_NOT_SUPPORTED: The specified parameters don't fit to the | |
3175 * capabilities of the UART or wrong UART number. | |
3176 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3177 * | |
3178 ******************************************************************************/ | |
3179 | |
3180 T_FDRET | |
3181 UAF_SetComPar (T_fd_UartId uartNo, | |
3182 T_baudrate baudrate, | |
3183 T_bitsPerCharacter bpc, | |
3184 T_stopBits sb, | |
3185 T_parity parity) | |
3186 { | |
3187 t_uart *uart; | |
3188 volatile SYS_UWORD8 mcr_value; | |
3189 volatile SYS_UWORD8 status; | |
3190 | |
3191 /* | |
3192 * Check UART number. | |
3193 * A return is used to simplify the code. | |
3194 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3195 * flow control is not supported. | |
3196 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3197 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3198 */ | |
3199 | |
3200 if (uartNo != UAF_UART_1) | |
3201 return (FD_NOT_SUPPORTED); | |
3202 | |
3203 /* | |
3204 * There is no case where FD_INTERNAL_ERR may be returned. | |
3205 * pa_space is not supported. Some baudrates are not supported too. | |
3206 * A return is used to simplify the code. | |
3207 */ | |
3208 | |
3209 if ((!baudrate_value[baudrate]) || | |
3210 (parity == pa_space)) | |
3211 | |
3212 return (FD_NOT_SUPPORTED); | |
3213 | |
3214 uart = &uart_parameters; | |
3215 | |
3216 /* | |
3217 * Mask all interrupts causes and disable sleep mode and low power mode. | |
3218 */ | |
3219 | |
3220 WRITE_UART_REGISTER (uart, IER, 0x00); | |
3221 | |
3222 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
3223 AI_MaskIT (ARMIO_MASKIT_GPIO); | |
3224 #elif (CHIPSET == 12) | |
3225 DISABLE_DSR_INTERRUPT (uart); | |
3226 #endif | |
3227 | |
3228 /* | |
3229 * Reset UART mode configuration. | |
3230 */ | |
3231 | |
3232 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
3233 IR_SLEEP_DISABLED | | |
3234 SIR_TX_WITHOUT_ACREG2 | | |
3235 FRAME_LENGTH_METHOD); | |
3236 | |
3237 /* | |
3238 * FIFO configuration. | |
3239 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
3240 */ | |
3241 | |
3242 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3243 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
3244 | |
3245 /* | |
3246 * Select the word length, the number of stop bits , the parity and set | |
3247 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
3248 */ | |
3249 | |
3250 uart->baudrate = baudrate_value[baudrate]; | |
3251 uart->autobauding = (baudrate == FD_BAUD_AUTO); /* if autobauding enable trigger */ | |
3252 uart->bits_per_char = 1; /* Start bit. */ | |
3253 mcr_value = DLAB; | |
3254 | |
3255 if (bpc == bpc_7) { | |
3256 | |
3257 mcr_value |= WLS_7; | |
3258 uart->bits_per_char += 7; | |
3259 | |
3260 } else { | |
3261 | |
3262 mcr_value |= WLS_8; | |
3263 uart->bits_per_char += 8; | |
3264 } | |
3265 | |
3266 if (sb == sb_2) { | |
3267 | |
3268 mcr_value |= STB; | |
3269 uart->bits_per_char += 2; | |
3270 | |
3271 } else | |
3272 uart->bits_per_char += 1; | |
3273 | |
3274 switch (parity) { | |
3275 | |
3276 case pa_even: | |
3277 | |
3278 mcr_value |= (PEN | EPS); | |
3279 uart->bits_per_char += 1; | |
3280 | |
3281 break; | |
3282 | |
3283 case pa_odd: | |
3284 | |
3285 mcr_value |= PEN; | |
3286 uart->bits_per_char += 1; | |
3287 | |
3288 break; | |
3289 | |
3290 default: | |
3291 | |
3292 /* | |
3293 * There is nothing to do. | |
3294 */ | |
3295 | |
3296 break; | |
3297 } | |
3298 | |
3299 WRITE_UART_REGISTER (uart, LCR, mcr_value); | |
3300 | |
3301 /* | |
3302 * Program the trigger levels. | |
3303 * MCR[6] must be set to 1. | |
3304 */ | |
3305 | |
3306 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
3307 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
3308 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
3309 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
3310 | |
3311 /* | |
3312 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
3313 */ | |
3314 | |
3315 WRITE_UART_REGISTER ( | |
3316 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
3317 | |
3318 /* | |
3319 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
3320 * are written to or they are not programmed. | |
3321 * FCR is a write-only register. It will not be modified. | |
3322 */ | |
3323 | |
3324 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
3325 RX_FIFO_RESET | /* self cleared */ | |
3326 TX_FIFO_RESET); /* self cleared */ | |
3327 | |
3328 /* | |
3329 * Program the baud generator. | |
3330 */ | |
3331 | |
3332 WRITE_UART_REGISTER (uart, DLL, dll[baudrate]); | |
3333 WRITE_UART_REGISTER (uart, DLM, dlh[baudrate]); | |
3334 | |
3335 /* | |
3336 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
3337 */ | |
3338 | |
3339 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
3340 | |
3341 /* | |
3342 * Select UART mode. | |
3343 */ | |
3344 | |
3345 WRITE_UART_REGISTER (uart, MDR1, ((baudrate==FD_BAUD_AUTO)? | |
3346 UART_MODE_AUTOBAUDING: | |
3347 UART_MODE) | | |
3348 IR_SLEEP_DISABLED | | |
3349 SIR_TX_WITHOUT_ACREG2 | | |
3350 FRAME_LENGTH_METHOD); | |
3351 | |
3352 /* | |
3353 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
3354 */ | |
3355 | |
3356 status = READ_UART_REGISTER (uart, MSR); | |
3357 | |
3358 if (status & MCTS) | |
3359 uart->rts_level = 0; | |
3360 else | |
3361 uart->rts_level = 1; | |
3362 | |
3363 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
3364 /* | |
3365 * Read the state of DTR and select the edge. | |
3366 */ | |
3367 | |
3368 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3369 | |
3370 if (uart->dtr_level) | |
3371 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3372 else | |
3373 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3374 | |
3375 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3376 #elif (CHIPSET == 12) | |
3377 /* | |
3378 * Read the state of DTR - No need to reload MSR register since its value | |
3379 * is still stored in the "status" local variable. | |
3380 */ | |
3381 | |
3382 if (status & MDSR) | |
3383 uart->dtr_level = 0; | |
3384 else | |
3385 uart->dtr_level = 1; | |
3386 #endif | |
3387 | |
3388 #if ((CHIPSET == 5) || (CHIPSET == 6)) | |
3389 /* | |
3390 * Unmask RX and TX interrupts and the modem status interrupt. | |
3391 */ | |
3392 | |
3393 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3394 #elif (CHIPSET == 12) | |
3395 /* | |
3396 * Unmask RX and TX interrupts and the modem status interrupt... | |
3397 */ | |
3398 | |
3399 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3400 | |
3401 /* | |
3402 * ... Then, unmask DSR interrupt... | |
3403 */ | |
3404 | |
3405 ENABLE_DSR_INTERRUPT (uart); | |
3406 | |
3407 /* | |
3408 * ... And finally allow sleep mode. | |
3409 */ | |
3410 | |
3411 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3412 /* | |
3413 WRITE_UART_REGISTER (uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3414 */ | |
3415 #else | |
3416 /* | |
3417 * Unmask RX and TX interrupts and the modem status interrupt | |
3418 * and allow sleep mode. | |
3419 */ | |
3420 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3421 | |
3422 /* WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI | IER_SLEEP);*/ | |
3423 | |
3424 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3425 #endif | |
3426 | |
3427 | |
3428 return (FD_OK); | |
3429 } | |
3430 | |
3431 /******************************************************************************* | |
3432 * | |
3433 * UAF_SetBuffer | |
3434 * | |
3435 * Purpose : Sets up the size of the circular buffers to be used in the UART | |
3436 * driver. This function may be called only if the UART is disabled | |
3437 * with UAF_Enable. | |
3438 * | |
3439 * Arguments: In : uartNo : Used UART. | |
3440 * bufSize : Specifies the size of the circular buffer. | |
3441 * rxThreshold: Amount of received bytes that leads to a call | |
3442 * to suspended read-out function which is passed | |
3443 * to the function UAF_ReadData. | |
3444 * txThreshold: Amount of bytes in the TX buffer to call the | |
3445 * suspended write-in function which is passed to | |
3446 * the function UAF_WriteData | |
3447 * Out: none | |
3448 * | |
3449 * Returns : FD_OK : Successful operation. | |
3450 * FD_NOT_SUPPORTED: bufSize exceeds the maximal possible | |
3451 * capabilities of the driver or the threshold | |
3452 * values don't correspond to the bufSize or | |
3453 * wrong UART number. | |
3454 * FD_INTERNAL_ERR : Internal problem with the hardware or the | |
3455 * function has been called while the UART is | |
3456 * enabled. | |
3457 * | |
3458 ******************************************************************************/ | |
3459 | |
3460 T_FDRET | |
3461 UAF_SetBuffer (T_fd_UartId uartNo, | |
3462 SYS_UWORD16 bufSize, | |
3463 SYS_UWORD16 rxThreshold, | |
3464 SYS_UWORD16 txThreshold) | |
3465 { | |
3466 T_FDRET result; | |
3467 t_uart *uart; | |
3468 | |
3469 /* | |
3470 * Check UART number. | |
3471 * A return is used to simplify the code. | |
3472 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3473 * flow control is not supported. | |
3474 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3475 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3476 */ | |
3477 | |
3478 if (uartNo != UAF_UART_1) | |
3479 return (FD_NOT_SUPPORTED); | |
3480 | |
3481 if ((bufSize > FD_MAX_BUFFER_SIZE) || | |
3482 (rxThreshold > FD_MAX_BUFFER_SIZE) || | |
3483 (txThreshold > FD_MAX_BUFFER_SIZE)) | |
3484 | |
3485 result = FD_NOT_SUPPORTED; | |
3486 | |
3487 else { | |
3488 | |
3489 uart = &uart_parameters; | |
3490 | |
3491 if (!DRIVER_DISABLED (uart)) | |
3492 result = FD_INTERNAL_ERR; | |
3493 | |
3494 else if (RX_HIGH_WATERMARK (bufSize) < RX_LOW_WATERMARK (bufSize)) | |
3495 result = FD_NOT_SUPPORTED; | |
3496 | |
3497 else { | |
3498 | |
3499 uart->buffer_size = bufSize; | |
3500 uart->rx_threshold_level = rxThreshold; | |
3501 uart->tx_threshold_level = txThreshold; | |
3502 | |
3503 result = FD_OK; | |
3504 } | |
3505 } | |
3506 | |
3507 return (result); | |
3508 } | |
3509 | |
3510 /******************************************************************************* | |
3511 * | |
3512 * UAF_SetFlowCtrl | |
3513 * | |
3514 * Purpose : Changes the flow control mode of the UART driver. | |
3515 * If a flow control is activated, DTR is activated or XOFF is sent | |
3516 * if the RX buffer is not able to store the received characters else | |
3517 * DTR is deactivated or XON is sent. | |
3518 * | |
3519 * Arguments: In : uartNo: Used UART. | |
3520 * fcMode: flow control mode (none, DTR/DSR, RTS/CTS, XON/XOFF). | |
3521 * XON : ASCII code of the XON character. | |
3522 * XOFF : ASCII code of the XOFF character. | |
3523 * Out: none | |
3524 * | |
3525 * Returns : FD_OK : Successful operation. | |
3526 * FD_NOT_SUPPORTED: The flow control mode is not supported or wrong | |
3527 * UART number. | |
3528 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3529 * | |
3530 ******************************************************************************/ | |
3531 | |
3532 T_FDRET | |
3533 UAF_SetFlowCtrl (T_fd_UartId uartNo, | |
3534 T_flowCtrlMode fcMode, | |
3535 SYS_UWORD8 XON, | |
3536 SYS_UWORD8 XOFF) | |
3537 { | |
3538 T_FDRET result; | |
3539 t_uart *uart; | |
3540 | |
3541 /* | |
3542 * Check UART number. | |
3543 * A return is used to simplify the code. | |
3544 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3545 * flow control is not supported. | |
3546 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3547 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3548 */ | |
3549 | |
3550 if (uartNo != UAF_UART_1) | |
3551 return (FD_NOT_SUPPORTED); | |
3552 | |
3553 /* | |
3554 * There is no case where FD_INTERNAL_ERR may be returned. | |
3555 * The DTR/DSR protocol is not supported. | |
3556 */ | |
3557 | |
3558 if (fcMode == fc_dtr) | |
3559 result = FD_NOT_SUPPORTED; | |
3560 | |
3561 else { | |
3562 | |
3563 uart = &uart_parameters; | |
3564 | |
3565 uart->tx_stopped_by_driver = 0; | |
3566 | |
3567 | |
3568 uart->xon_character = XON; | |
3569 uart->xoff_character = XOFF; | |
3570 uart->flow_control_mode = fcMode; | |
3571 | |
3572 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3573 /* | |
3574 * Disable sleep mode. | |
3575 */ | |
3576 | |
3577 WRITE_UART_REGISTER ( | |
3578 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3579 #endif | |
3580 | |
3581 WRITE_UART_REGISTER ( | |
3582 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
3583 | |
3584 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3585 /* | |
3586 * Re-enable sleep mode. | |
3587 */ | |
3588 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3589 /* | |
3590 WRITE_UART_REGISTER ( | |
3591 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3592 */ | |
3593 #endif | |
3594 | |
3595 if (fcMode == fc_rts) { | |
3596 #if 1 // Dmitriy: enable hardware assisted CTS | |
3597 volatile SYS_UWORD8 oldValue; | |
3598 | |
3599 oldValue = READ_UART_REGISTER (uart, LCR); | |
3600 | |
3601 // LCR value to allow acces to EFR | |
3602 | |
3603 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3604 | |
3605 // enable hardware assisted CTS | |
3606 | |
3607 SET_BIT (uart, EFR, AUTO_CTS_BIT); | |
3608 | |
3609 WRITE_UART_REGISTER (uart, LCR, oldValue); | |
3610 #endif | |
3611 if (uart->rts_level) | |
3612 uart->tx_stopped_by_driver = 1; | |
3613 } | |
3614 | |
3615 /* | |
3616 * If the high watermark is reached, RTS is activated or XOFF is sent | |
3617 * according to the flow control mode. Else, RTS is deactivated or XON | |
3618 * is sent. | |
3619 */ | |
3620 | |
3621 if (fcMode != fc_none) { | |
3622 | |
3623 if (get_bytes_in_rx_buffer (uart) >= RX_HIGH_WATERMARK ( | |
3624 uart->buffer_size)) { | |
3625 | |
3626 uart->rx_stopped_by_driver = 1; | |
3627 stop_receiver (uart); | |
3628 | |
3629 } else if (!DRIVER_DISABLED (uart)) { | |
3630 | |
3631 uart->rx_stopped_by_driver = 0; | |
3632 start_receiver (uart); | |
3633 } | |
3634 | |
3635 } else { | |
3636 | |
3637 uart->rx_stopped_by_driver = 0; | |
3638 uart->tx_stopped_by_driver = 0; | |
3639 } | |
3640 | |
3641 result = FD_OK; | |
3642 } | |
3643 | |
3644 return (result); | |
3645 } | |
3646 | |
3647 /******************************************************************************* | |
3648 * | |
3649 * UAF_SetEscape | |
3650 * | |
3651 * Purpose : To return to the command mode at the ACI while a data connection | |
3652 * is established, an escape sequence has to be detected. | |
3653 * To distinguish between user data and the escape sequence a | |
3654 * defined guard period is necessary before and after this sequence. | |
3655 * | |
3656 * Arguments: In: uartNo : Used UART. | |
3657 * escChar : ASCII character which could appear three times | |
3658 * as an escape sequence. | |
3659 * guardPeriod: Denotes the minimal duration of the rest before | |
3660 * the first and after the last character of the | |
3661 * escape sequence, and the maximal receiving | |
3662 * duration of the whole escape string. This value | |
3663 * is expressed in ms. | |
3664 * Out: none | |
3665 * | |
3666 * Returns : FD_OK : Successful operation. | |
3667 * FD_NOT_SUPPORTED: Wrong UART number. | |
3668 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3669 * | |
3670 ******************************************************************************/ | |
3671 | |
3672 T_FDRET | |
3673 UAF_SetEscape (T_fd_UartId uartNo, | |
3674 SYS_UWORD8 escChar, | |
3675 SYS_UWORD16 guardPeriod) | |
3676 { | |
3677 t_uart *uart; | |
3678 | |
3679 /* | |
3680 * Check UART number. | |
3681 * A return is used to simplify the code. | |
3682 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3683 * flow control is not supported. | |
3684 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3685 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3686 */ | |
3687 | |
3688 if (uartNo != UAF_UART_1) | |
3689 return (FD_NOT_SUPPORTED); | |
3690 | |
3691 /* | |
3692 * There is no case where FD_INTERNAL_ERR may be returned. | |
3693 */ | |
3694 | |
3695 uart = &uart_parameters; | |
3696 | |
3697 uart->esc_seq_modified = 1; | |
3698 uart->esc_seq_character = escChar; | |
3699 uart->guard_period = CONVERT_TIME_IN_TDMA ((UNSIGNED) guardPeriod); | |
3700 uart->esc_seq_modified = 0; /* Set to 0 by the RX interrupt handler. */ | |
3701 | |
3702 return (FD_OK); | |
3703 } | |
3704 | |
3705 /******************************************************************************* | |
3706 * | |
3707 * UAF_InpAvail | |
3708 * | |
3709 * Purpose : Returns the number of characters available in the RX buffer of the | |
3710 * driver. If the driver is disabled the function returns 0. | |
3711 * | |
3712 * Arguments: In : uartNo: Used UART. | |
3713 * Out: none | |
3714 * | |
3715 * Returns : >= 0 : The returned value is the amount of data in the | |
3716 * RX buffer. | |
3717 * FD_NOT_SUPPORTED: Wrong UART number. | |
3718 * FD_NOT_READY : The function is called while the callback of the | |
3719 * readOutFunc function is activated and still not | |
3720 * terminated. | |
3721 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3722 * | |
3723 ******************************************************************************/ | |
3724 | |
3725 T_FDRET | |
3726 UAF_InpAvail (T_fd_UartId uartNo) | |
3727 { | |
3728 T_FDRET result; | |
3729 t_uart *uart; | |
3730 SYS_UWORD16 bytes_read; | |
3731 SYS_UWORD16 bytes_in_rx_buffer; | |
3732 | |
3733 /* | |
3734 * Check UART number. | |
3735 * A return is used to simplify the code. | |
3736 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3737 * flow control is not supported. | |
3738 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3739 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3740 */ | |
3741 | |
3742 if (uartNo != UAF_UART_1) | |
3743 return (FD_NOT_SUPPORTED); | |
3744 | |
3745 /* | |
3746 * There is no case where FD_INTERNAL_ERR may be returned. | |
3747 */ | |
3748 | |
3749 uart = &uart_parameters; | |
3750 | |
3751 if (uart->rd_call_setup == rm_notDefined) | |
3752 result = FD_NOT_READY; | |
3753 | |
3754 else if (DRIVER_DISABLED (uart)) | |
3755 result = 0; | |
3756 | |
3757 else { | |
3758 | |
3759 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3760 | |
3761 /* | |
3762 * Update reading pointer of the RX buffer if a callback from LISR | |
3763 * has been done. | |
3764 */ | |
3765 | |
3766 if (uart->rd_call_from_hisr_in_progress) { | |
3767 | |
3768 bytes_read = uart->rd_size_before_call[0] - | |
3769 uart->rd_size_after_call[0] + | |
3770 uart->rd_size_before_call[1] - | |
3771 uart->rd_size_after_call[1]; | |
3772 | |
3773 uart->rx_out += bytes_read; | |
3774 | |
3775 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
3776 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
3777 | |
3778 /* | |
3779 * Check if the low watermark is reached to enable the receiver. | |
3780 */ | |
3781 | |
3782 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3783 | |
3784 if ((uart->flow_control_mode != fc_none) && | |
3785 (bytes_in_rx_buffer <= RX_LOW_WATERMARK (uart->buffer_size))) { | |
3786 | |
3787 if ((!uart->rx_stopped_by_application) && | |
3788 uart->rx_stopped_by_driver) | |
3789 start_receiver (uart); | |
3790 | |
3791 uart->rx_stopped_by_driver = 0; | |
3792 } | |
3793 | |
3794 uart->rd_call_from_hisr_in_progress = 0; | |
3795 } | |
3796 | |
3797 result = (T_FDRET) bytes_in_rx_buffer; | |
3798 } | |
3799 | |
3800 return (result); | |
3801 } | |
3802 | |
3803 /******************************************************************************* | |
3804 * | |
3805 * UAF_OutpAvail | |
3806 * | |
3807 * Purpose : Returns the number of free characters in TX buffer of the driver. | |
3808 * If the driver is disabled the function returns 0. | |
3809 * | |
3810 * Arguments: In : uartNo: Used UART. | |
3811 * Out: none | |
3812 * | |
3813 * Returns : >= 0 : The returned value is the amount of data in the | |
3814 * TX buffer. | |
3815 * FD_NOT_SUPPORTED: Wrong UART number. | |
3816 * FD_NOT_READY : The function is called while the callback of the | |
3817 * writeInFunc function is activated and still not | |
3818 * terminated. | |
3819 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3820 * | |
3821 ******************************************************************************/ | |
3822 | |
3823 T_FDRET | |
3824 UAF_OutpAvail (T_fd_UartId uartNo) | |
3825 { | |
3826 T_FDRET result; | |
3827 t_uart *uart; | |
3828 SYS_UWORD16 bytes_written; | |
3829 | |
3830 /* | |
3831 * Check UART number. | |
3832 * A return is used to simplify the code. | |
3833 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3834 * flow control is not supported. | |
3835 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3836 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3837 */ | |
3838 | |
3839 if (uartNo != UAF_UART_1) | |
3840 return (FD_NOT_SUPPORTED); | |
3841 | |
3842 /* | |
3843 * There is no case where FD_INTERNAL_ERR may be returned. | |
3844 */ | |
3845 | |
3846 uart = &uart_parameters; | |
3847 | |
3848 if (uart->wr_call_setup == rm_notDefined) | |
3849 result = FD_NOT_READY; | |
3850 | |
3851 else if (DRIVER_DISABLED (uart)) | |
3852 result = 0; | |
3853 | |
3854 else { | |
3855 | |
3856 /* | |
3857 * Update reading pointer of the TX buffer if a callback from LISR | |
3858 * has been done. | |
3859 */ | |
3860 | |
3861 if (uart->wr_call_from_hisr_in_progress) { | |
3862 | |
3863 bytes_written = uart->wr_size_before_call[0] - | |
3864 uart->wr_size_after_call[0] + | |
3865 uart->wr_size_before_call[1] - | |
3866 uart->wr_size_after_call[1]; | |
3867 | |
3868 uart->tx_in += bytes_written; | |
3869 | |
3870 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
3871 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
3872 | |
3873 uart->wr_call_from_hisr_in_progress = 0; | |
3874 | |
3875 /* | |
3876 * if the TX FIFO is empty, unmask TX empty interrupt. | |
3877 */ | |
3878 | |
3879 if (!uart->tx_stopped_by_driver && | |
3880 (READ_UART_REGISTER (uart, LSR) & THRE)) | |
3881 { | |
3882 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3883 /* | |
3884 * Disable sleep mode. | |
3885 */ | |
3886 | |
3887 WRITE_UART_REGISTER ( | |
3888 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3889 #endif | |
3890 | |
3891 /* | |
3892 * Unmask Tx interrupt. | |
3893 */ | |
3894 | |
3895 WRITE_UART_REGISTER ( | |
3896 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
3897 } | |
3898 } | |
3899 | |
3900 result = (T_FDRET) (uart->buffer_size - get_bytes_in_tx_buffer (uart)); | |
3901 } | |
3902 | |
3903 return (result); | |
3904 } | |
3905 | |
3906 /******************************************************************************* | |
3907 * | |
3908 * UAF_EnterSleep | |
3909 * | |
3910 * Purpose : Checks if UART is ready to enter Deep Sleep. If ready, enables | |
3911 * wake-up interrupt. | |
3912 * | |
3913 * Arguments: In : uartNo: Used UART. | |
3914 * Out: none | |
3915 * | |
3916 * Returns : 0 : Deep Sleep is not possible. | |
3917 * >= 1 : Deep Sleep is possible. | |
3918 * FD_NOT_SUPPORTED: Wrong UART number. | |
3919 * | |
3920 * Warning: Parameters are not verified. | |
3921 * | |
3922 ******************************************************************************/ | |
3923 | |
3924 T_FDRET | |
3925 UAF_EnterSleep (T_fd_UartId uartNo) | |
3926 { | |
3927 t_uart *uart; | |
3928 SYS_BOOL deep_sleep; | |
3929 volatile SYS_UWORD8 status; | |
3930 | |
3931 /* | |
3932 * Check UART number. | |
3933 * A return is used to simplify the code. | |
3934 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3935 * flow control is not supported. | |
3936 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3937 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3938 */ | |
3939 | |
3940 if (uartNo != UAF_UART_1) | |
3941 return (FD_NOT_SUPPORTED); | |
3942 | |
3943 uart = &uart_parameters; | |
3944 deep_sleep = 0; | |
3945 | |
3946 /* | |
3947 * Check if RX & TX FIFOs are both empty | |
3948 */ | |
3949 | |
3950 status = READ_UART_REGISTER (uart, LSR); | |
3951 | |
3952 if (!(status & DR) && | |
3953 (status & TEMT)) { | |
3954 | |
3955 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3956 /* | |
3957 * Disable sleep mode. | |
3958 */ | |
3959 | |
3960 WRITE_UART_REGISTER ( | |
3961 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3962 #endif | |
3963 | |
3964 #if (CHIPSET == 12) | |
3965 /* | |
3966 * Mask DSR interrupt. | |
3967 */ | |
3968 | |
3969 DISABLE_DSR_INTERRUPT (uart); | |
3970 #endif | |
3971 | |
3972 /* | |
3973 * Mask RX, TX and the modem status interrupts. | |
3974 */ | |
3975 | |
3976 WRITE_UART_REGISTER ( | |
3977 uart, IER, READ_UART_REGISTER (uart, IER) & | |
3978 ~(ERBI | ETBEI | EDSSI)); | |
3979 | |
3980 /* | |
3981 * Enable the wake-up interrupt. | |
3982 */ | |
3983 | |
3984 ENABLE_WAKEUP_INTERRUPT (uart); | |
3985 | |
3986 deep_sleep = 1; | |
3987 } | |
3988 | |
3989 return (deep_sleep); | |
3990 } | |
3991 | |
3992 /******************************************************************************* | |
3993 * | |
3994 * UAF_WakeUp | |
3995 * | |
3996 * Purpose : Wakes up UART after Deep Sleep. | |
3997 * | |
3998 * Arguments: In : uartNo: Used UART. | |
3999 * Out: none | |
4000 * | |
4001 * Returns : FD_OK : Successful operation. | |
4002 * FD_NOT_SUPPORTED: Wrong UART number. | |
4003 * | |
4004 * Warning: Parameters are not verified. | |
4005 * | |
4006 ******************************************************************************/ | |
4007 | |
4008 T_FDRET | |
4009 UAF_WakeUp (T_fd_UartId uartNo) | |
4010 { | |
4011 t_uart *uart; | |
4012 | |
4013 /* | |
4014 * Check UART number. | |
4015 * A return is used to simplify the code. | |
4016 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4017 * flow control is not supported. | |
4018 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4019 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4020 */ | |
4021 | |
4022 if (uartNo != UAF_UART_1) | |
4023 return (FD_NOT_SUPPORTED); | |
4024 | |
4025 uart = &uart_parameters; | |
4026 | |
4027 /* | |
4028 * Disable the wake-up interrupt. | |
4029 */ | |
4030 | |
4031 DISABLE_WAKEUP_INTERRUPT (uart); | |
4032 | |
4033 /* | |
4034 * Unmask RX and modem status interrupts. | |
4035 */ | |
4036 | |
4037 WRITE_UART_REGISTER ( | |
4038 uart, IER, READ_UART_REGISTER (uart, IER) | (ERBI | EDSSI)); | |
4039 | |
4040 #if (CHIPSET == 12) | |
4041 /* | |
4042 * Unmask DSR interrupt. | |
4043 */ | |
4044 | |
4045 ENABLE_DSR_INTERRUPT (uart); | |
4046 #endif | |
4047 | |
4048 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4049 /* | |
4050 * Allow sleep mode. | |
4051 */ | |
4052 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4053 /* | |
4054 WRITE_UART_REGISTER ( | |
4055 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4056 */ | |
4057 #endif | |
4058 | |
4059 return (FD_OK); | |
4060 } | |
4061 | |
4062 /******************************************************************************* | |
4063 * | |
4064 * UAF_ReadData | |
4065 * | |
4066 * Purpose : To read the received characters out of the RX buffer the address | |
4067 * of a function is passed. If characters are available, the driver | |
4068 * calls this function and pass the address and the amount of | |
4069 * readable characters. Because the RX buffer is circular, the | |
4070 * callback function may be called with more than one address of | |
4071 * buffer fragment. | |
4072 * The readOutFunc function modifies the contents of the size array | |
4073 * to return the driver the number of processed characters. Each | |
4074 * array entry is decremented by the number of bytes read in the | |
4075 * fragment. | |
4076 * If the UAF_ReadData is called while the RX buffer is empty, it | |
4077 * depends on the suspend parameter to suspend the call-back or to | |
4078 * leave without any operation. In the case of suspension, the | |
4079 * return value of UAF_ReadData is UAF_SUSPENDED. A delayed call-back | |
4080 * will be performed if: | |
4081 * - the RX buffer reachs the adjusted threshold (rxThreshold of | |
4082 * UAF_SetBuffer), | |
4083 * - the state of a V.24 input line has changed, | |
4084 * - a break is detected, | |
4085 * - an escape sequence is detected. | |
4086 * If no suspension is necessary the function returns the number of | |
4087 * processed bytes. | |
4088 * | |
4089 * Arguments: In : uartNo : Used UART. | |
4090 * suspend : mode of suspension in case of RX buffer empty. | |
4091 * readOutFunc: Callback function. | |
4092 * cldFromIrq: The driver sets this parameter to 1 | |
4093 * if the callback function is called | |
4094 * from an interrupt service routine. | |
4095 * reInstall : The call-back function sets this | |
4096 * parameter to rm_reInstall if the | |
4097 * driver must call again the callback | |
4098 * function when the RX threshold level | |
4099 * is reached. Else it will be set to | |
4100 * rm_noInstall. Before to call the | |
4101 * readOutFunc function this parameter | |
4102 * is set to rm_notDefined. | |
4103 * nsource : Informed the callback function about | |
4104 * the number of fragments which are | |
4105 * ready to copy from the circular RX | |
4106 * buffer. | |
4107 * source : Array which contains the addresses | |
4108 * of the fragments. | |
4109 * size : Array which contains the sizes of | |
4110 * each fragments. | |
4111 * state : The state parameter is the status | |
4112 * of the V.24 lines and the break / | |
4113 * escape detection. The state | |
4114 * parameter is described in the | |
4115 * specification of UAF_GetLineState. | |
4116 * Out: none | |
4117 * | |
4118 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4119 * FD_NOT_SUPPORTED: Wrong UART number. | |
4120 * FD_SUSPENDED : The callback is suspended until the buffer or | |
4121 * state condition changed. | |
4122 * FD_NOT_READY : The function is called while the callback is | |
4123 * activated and still not terminated. | |
4124 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4125 * | |
4126 ******************************************************************************/ | |
4127 | |
4128 T_FDRET | |
4129 UAF_ReadData (T_fd_UartId uartNo, | |
4130 T_suspendMode suspend, | |
4131 void (readOutFunc (SYS_BOOL cldFromIrq, | |
4132 T_reInstMode *reInstall, | |
4133 SYS_UWORD8 nsource, | |
4134 SYS_UWORD8 *source[], | |
4135 SYS_UWORD16 size[], | |
4136 SYS_UWORD32 state))) | |
4137 { | |
4138 T_FDRET result; | |
4139 t_uart *uart; | |
4140 SYS_UWORD16 bytes_read; | |
4141 SYS_UWORD16 bytes_in_rx_buffer; | |
4142 | |
4143 /* | |
4144 * Check UART number. | |
4145 * A return is used to simplify the code. | |
4146 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4147 * flow control is not supported. | |
4148 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4149 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4150 */ | |
4151 | |
4152 if (uartNo != UAF_UART_1) | |
4153 return (FD_NOT_SUPPORTED); | |
4154 | |
4155 /* | |
4156 * There is no case where FD_INTERNAL_ERR may be returned. | |
4157 */ | |
4158 | |
4159 uart = &uart_parameters; | |
4160 | |
4161 if (uart->rd_call_setup == rm_notDefined) | |
4162 result = FD_NOT_READY; | |
4163 | |
4164 else if (get_bytes_in_rx_buffer (uart) || uart->esc_seq_received) { | |
4165 | |
4166 uart->readOutFunc = readOutFunc; | |
4167 update_reading_callback (uart, 0); /* 0: call from application. */ | |
4168 | |
4169 bytes_read = uart->rd_size_before_call[0] - | |
4170 uart->rd_size_after_call[0] + | |
4171 uart->rd_size_before_call[1] - | |
4172 uart->rd_size_after_call[1]; | |
4173 | |
4174 uart->rx_out += bytes_read; | |
4175 | |
4176 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
4177 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
4178 | |
4179 /* | |
4180 * Check if the low watermark is reached to enable the receiver. | |
4181 */ | |
4182 | |
4183 if ((uart->flow_control_mode != fc_none) && | |
4184 (get_bytes_in_rx_buffer (uart) <= RX_LOW_WATERMARK ( | |
4185 uart->buffer_size))) { | |
4186 | |
4187 if ((!uart->rx_stopped_by_application) && | |
4188 uart->rx_stopped_by_driver && (!uart->rx_stopped_by_lisr)) | |
4189 start_receiver (uart); | |
4190 | |
4191 uart->rx_stopped_by_driver = 0; | |
4192 } | |
4193 | |
4194 uart->esc_seq_received = 0; | |
4195 result = (T_FDRET) bytes_read; | |
4196 | |
4197 } else if (suspend == sm_suspend) { | |
4198 | |
4199 uart->readOutFunc = readOutFunc; | |
4200 uart->reading_suspended = 1; | |
4201 result = FD_SUSPENDED; | |
4202 | |
4203 } else { | |
4204 | |
4205 /* | |
4206 * The previous callback function is deinstalled. | |
4207 */ | |
4208 | |
4209 uart->rd_call_setup = rm_noInstall; | |
4210 uart->reading_suspended = 0; | |
4211 result = 0; /* 0 byte read. */ | |
4212 } | |
4213 | |
4214 return (result); | |
4215 } | |
4216 | |
4217 /******************************************************************************* | |
4218 * | |
4219 * UAF_WriteData | |
4220 * | |
4221 * Purpose : To write characters into the TX buffer the address of a function | |
4222 * is passed. If free space is available in the buffer, the driver | |
4223 * calls this function and passes the destination address and the | |
4224 * amount of space. Because the TX buffer is circular, the callback | |
4225 * function may be called with more than one address of buffer | |
4226 * fragment. | |
4227 * The writeInFunc function modifies the contents of the size array | |
4228 * to return the driver the number of processed bytes. Each array | |
4229 * entry is decremented by the number of bytes written in this | |
4230 * fragment. | |
4231 * If the UAF_WriteData function is called while the TX buffer is | |
4232 * full, it depends on the suspend parameter to suspend the | |
4233 * call-back or to leave this function without any operation. In the | |
4234 * case of suspension the returned value of the UAF_WriteData is | |
4235 * UAF_SUSPENDED. A delayed call-back will be performed if the TX | |
4236 * buffer reaches the adjusted threshold (txThreshold of | |
4237 * UAF_SetBuffer). If no suspension is necessary the function returns | |
4238 * the number of processed bytes. | |
4239 * | |
4240 * Arguments: In : uartNo : Used UART. | |
4241 * suspend : mode of suspension in case of TX buffer empty. | |
4242 * writeInFunc: Callback function. | |
4243 * cldFromIrq: The driver sets this parameter to 1 | |
4244 * if the call-back function is called | |
4245 * from an interrupt service routine. | |
4246 * reInstall : The callback function sets this | |
4247 * parameter to rm_reInstall if the | |
4248 * driver must call again the callback | |
4249 * function when the TX threshold level | |
4250 * is reached. Else it will be set to | |
4251 * rm_noInstall. Before to call the | |
4252 * writeInFunc function this parameter | |
4253 * is set to rm_notDefined. | |
4254 * ndest : Informed the callback function about | |
4255 * the number of fragments which are | |
4256 * available in the TX buffer. | |
4257 * dest : Array which contains the addresses | |
4258 * of the fragments. | |
4259 * size : Array which contains the sizes of | |
4260 * each fragments. | |
4261 * Out: none | |
4262 * | |
4263 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4264 * FD_NOT_SUPPORTED: Wrong UART number. | |
4265 * FD_SUSPENDED : The callback is suspended until the buffer | |
4266 * condition changed. | |
4267 * FD_NOT_READY : The function is called while the callback is | |
4268 * activated and still not terminated. | |
4269 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4270 * | |
4271 ******************************************************************************/ | |
4272 | |
4273 T_FDRET | |
4274 UAF_WriteData (T_fd_UartId uartNo, | |
4275 T_suspendMode suspend, | |
4276 void (writeInFunc (SYS_BOOL cldFromIrq, | |
4277 T_reInstMode *reInstall, | |
4278 SYS_UWORD8 ndest, | |
4279 SYS_UWORD8 *dest[], | |
4280 SYS_UWORD16 size[]))) | |
4281 { | |
4282 T_FDRET result; | |
4283 t_uart *uart; | |
4284 SYS_UWORD16 bytes_written; | |
4285 | |
4286 /* | |
4287 * Check UART number. | |
4288 * A return is used to simplify the code. | |
4289 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4290 * flow control is not supported. | |
4291 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4292 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4293 */ | |
4294 | |
4295 if (uartNo != UAF_UART_1) | |
4296 return (FD_NOT_SUPPORTED); | |
4297 | |
4298 /* | |
4299 * There is no case where FD_INTERNAL_ERR may be returned. | |
4300 */ | |
4301 | |
4302 uart = &uart_parameters; | |
4303 | |
4304 if (uart->wr_call_setup == rm_notDefined) | |
4305 result = FD_NOT_READY; | |
4306 | |
4307 else if ((!DRIVER_DISABLED (uart)) && | |
4308 (get_bytes_in_tx_buffer (uart) < uart->buffer_size)) { | |
4309 | |
4310 uart->writeInFunc = writeInFunc; | |
4311 update_writing_callback (uart, 0); /* 0: call from application. */ | |
4312 | |
4313 bytes_written = uart->wr_size_before_call[0] - | |
4314 uart->wr_size_after_call[0] + | |
4315 uart->wr_size_before_call[1] - | |
4316 uart->wr_size_after_call[1]; | |
4317 | |
4318 uart->tx_in += bytes_written; | |
4319 | |
4320 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
4321 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
4322 | |
4323 /* If we have been stopped due to high RTS, we have to | |
4324 * wake up application processor by IRQ via IO1 -HW */ | |
4325 if (uart->tx_stopped_by_driver) | |
4326 HighGPIO(1); | |
4327 | |
4328 /* | |
4329 * If: | |
4330 * - there is no break to send, | |
4331 * - the flow control is not activated, | |
4332 * unmask the TX empty interrupt to be able to send characters. | |
4333 */ | |
4334 if (!uart->break_to_send && | |
4335 !uart->tx_stopped_by_driver) | |
4336 { | |
4337 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4338 /* | |
4339 * Disable sleep mode. | |
4340 */ | |
4341 | |
4342 WRITE_UART_REGISTER ( | |
4343 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4344 #endif | |
4345 | |
4346 /* | |
4347 * Unmask Tx interrupt. | |
4348 */ | |
4349 | |
4350 WRITE_UART_REGISTER ( | |
4351 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
4352 } | |
4353 | |
4354 result = (T_FDRET) bytes_written; | |
4355 | |
4356 } else if (suspend == sm_suspend) { | |
4357 | |
4358 uart->writeInFunc = writeInFunc; | |
4359 uart->writing_suspended = 1; | |
4360 result = FD_SUSPENDED; | |
4361 | |
4362 } else { | |
4363 | |
4364 /* | |
4365 * The previous callback function is deinstalled. | |
4366 */ | |
4367 | |
4368 uart->wr_call_setup = rm_noInstall; | |
4369 uart->writing_suspended = 0; | |
4370 result = 0; | |
4371 } | |
4372 | |
4373 return (result); | |
4374 } | |
4375 | |
4376 /******************************************************************************* | |
4377 * | |
4378 * UAF_StopRec | |
4379 * | |
4380 * Purpose : If a flow control mode is set, this function tells the terminal | |
4381 * equipment that no more data can be received. | |
4382 * XON/XOFF: XOFF is sent. | |
4383 * DTR/DSR : DTR is desactivated. | |
4384 * RTS/CTS : RTS is deactivated. | |
4385 * | |
4386 * Arguments: In : uartNo: Used UART. | |
4387 * Out: none | |
4388 * | |
4389 * Returns : FD_OK : Successful operation. | |
4390 * FD_NOT_SUPPORTED: Wrong UART number. | |
4391 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4392 * | |
4393 ******************************************************************************/ | |
4394 | |
4395 T_FDRET | |
4396 UAF_StopRec (T_fd_UartId uartNo) | |
4397 { | |
4398 t_uart *uart; | |
4399 | |
4400 /* | |
4401 * Check UART number. | |
4402 * A return is used to simplify the code. | |
4403 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4404 * flow control is not supported. | |
4405 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4406 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4407 */ | |
4408 | |
4409 if (uartNo != UAF_UART_1) | |
4410 return (FD_NOT_SUPPORTED); | |
4411 | |
4412 /* | |
4413 * There is no case where FD_INTERNAL_ERR may be returned. | |
4414 */ | |
4415 | |
4416 uart = &uart_parameters; | |
4417 | |
4418 if (uart->flow_control_mode != fc_none) | |
4419 stop_receiver (uart); | |
4420 | |
4421 uart->rx_stopped_by_application = 1; | |
4422 | |
4423 return (FD_OK); | |
4424 } | |
4425 | |
4426 /******************************************************************************* | |
4427 * | |
4428 * UAF_StartRec | |
4429 * | |
4430 * Purpose : If a flow control mode is set, this function tells the terminal | |
4431 * equipment that the receiver is again able to receive more data. | |
4432 * If the buffer has already reached the high water mark the driver | |
4433 * sends the signal only if the buffer drains to a low water mark. | |
4434 * XON/XOFF: XON is sent. | |
4435 * DTR/DSR : DTR is activated. | |
4436 * RTS/CTS : RTS is activated. | |
4437 * | |
4438 * Arguments: In : uartNo: Used UART. | |
4439 * Out: none | |
4440 * | |
4441 * Returns : FD_OK : Successful operation. | |
4442 * FD_NOT_SUPPORTED: Wrong UART number. | |
4443 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4444 * | |
4445 ******************************************************************************/ | |
4446 | |
4447 T_FDRET | |
4448 UAF_StartRec (T_fd_UartId uartNo) | |
4449 { | |
4450 t_uart *uart; | |
4451 | |
4452 /* | |
4453 * Check UART number. | |
4454 * A return is used to simplify the code. | |
4455 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4456 * flow control is not supported. | |
4457 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4458 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4459 */ | |
4460 | |
4461 if (uartNo != UAF_UART_1) | |
4462 return (FD_NOT_SUPPORTED); | |
4463 | |
4464 /* | |
4465 * There is no case where FD_INTERNAL_ERR may be returned. | |
4466 */ | |
4467 | |
4468 uart = &uart_parameters; | |
4469 | |
4470 if ((uart->flow_control_mode != fc_none) && (!uart->rx_stopped_by_driver)) | |
4471 start_receiver (uart); | |
4472 | |
4473 uart->rx_stopped_by_application = 0; | |
4474 | |
4475 return (FD_OK); | |
4476 } | |
4477 | |
4478 /******************************************************************************* | |
4479 * | |
4480 * UAF_GetLineState | |
4481 * | |
4482 * Purpose : Returns the state of the V.24 lines, the flow control state and | |
4483 * the result of the break/escape detection process as a bit field. | |
4484 * | |
4485 * Arguments: In : uartNo: Used UART. | |
4486 * Out: state : State of the V.24 lines, the flow control state and | |
4487 * the result of the break/escape sequence detection | |
4488 * process as a bit field. | |
4489 * | |
4490 * Returns : FD_OK : Successful operation. | |
4491 * FD_NOT_SUPPORTED: Wrong UART number. | |
4492 * FD_NOT_READY : The function is called while the callback of | |
4493 * the readOutFunc function is activated and still | |
4494 * not terminated. | |
4495 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4496 * | |
4497 ******************************************************************************/ | |
4498 | |
4499 T_FDRET | |
4500 UAF_GetLineState (T_fd_UartId uartNo, | |
4501 SYS_UWORD32 *state) | |
4502 { | |
4503 T_FDRET result; | |
4504 t_uart *uart; | |
4505 | |
4506 /* | |
4507 * Check UART number. | |
4508 * A return is used to simplify the code. | |
4509 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4510 * flow control is not supported. | |
4511 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4512 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4513 */ | |
4514 | |
4515 if (uartNo != UAF_UART_1) | |
4516 return (FD_NOT_SUPPORTED); | |
4517 | |
4518 /* | |
4519 * There is no case where FD_INTERNAL_ERR may be returned. | |
4520 * Signals not supported are reported as 0. | |
4521 */ | |
4522 | |
4523 uart = &uart_parameters; | |
4524 | |
4525 if (uart->rd_call_setup == rm_notDefined) | |
4526 result = FD_NOT_READY; | |
4527 | |
4528 else { | |
4529 | |
4530 /* | |
4531 * The field state_2 is used when state_1 is set to 0 to avoid to | |
4532 * lose events detected in the RX interrupt handler. | |
4533 * Fields BRK and BRKLEN are set when a break is detected. | |
4534 * The field ESC is set when an escape sequence is detected. | |
4535 */ | |
4536 | |
4537 *state = uart->state_2; | |
4538 uart->state_2 = 0; | |
4539 uart->state = &(uart->state_2); | |
4540 | |
4541 *state |= uart->state_1; | |
4542 uart->state_1 = 0; | |
4543 uart->state = &(uart->state_1); | |
4544 | |
4545 *state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
4546 | |
4547 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4548 (((SYS_UWORD32) uart->dtr_level) << DTR) | | |
4549 #endif | |
4550 | |
4551 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
4552 uart->tx_stopped_by_driver)) << TXSTP) | | |
4553 | |
4554 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
4555 uart->rx_stopped_by_driver)) << RXSTP) | | |
4556 | |
4557 (((SYS_UWORD32) (uart->buffer_size - | |
4558 get_bytes_in_rx_buffer (uart))) << RXBLEV)); | |
4559 | |
4560 /* | |
4561 * Fields SA, SB and X are set according to the flow control: | |
4562 * | |
4563 * None RTS/CTS XON/XOFF | |
4564 * SA DTR DTR DTR | |
4565 * SB RTS 0 RTS | |
4566 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
4567 * | |
4568 * DTR is supported on C, D & E-Sample. | |
4569 */ | |
4570 | |
4571 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4572 *state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
4573 #endif | |
4574 | |
4575 if (uart->flow_control_mode != fc_rts) | |
4576 *state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
4577 | |
4578 if (uart->flow_control_mode == fc_rts) | |
4579 *state |= (((SYS_UWORD32) uart->rts_level) << X); | |
4580 | |
4581 else if ((uart->flow_control_mode == fc_xoff) && | |
4582 (uart->tx_stopped_by_application || | |
4583 uart->tx_stopped_by_driver)) | |
4584 *state |= (1 << X); | |
4585 | |
4586 result = FD_OK; | |
4587 } | |
4588 | |
4589 return (result); | |
4590 } | |
4591 | |
4592 /******************************************************************************* | |
4593 * | |
4594 * UAF_SetLineState | |
4595 * | |
4596 * Purpose : Sets the states of the V.24 status lines according to the bit | |
4597 * field of the parameter state. | |
4598 * | |
4599 * Arguments: In : uartNo: Used UART. | |
4600 * state : Bit field. Only the signals which are marked with | |
4601 * the 'set' access can be used to change the state of | |
4602 * the signal. | |
4603 * mask : Bit field with the same structure as state. Each bit | |
4604 * in state corresponds to a bit in mask. Settabled | |
4605 * bits marked by a 1 are manipulated by the driver. | |
4606 * Out: none | |
4607 * | |
4608 * Returns : FD_OK : Successful operation. | |
4609 * FD_NOT_SUPPORTED: Wrong UART number. | |
4610 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4611 * | |
4612 ******************************************************************************/ | |
4613 | |
4614 T_FDRET | |
4615 UAF_SetLineState (T_fd_UartId uartNo, | |
4616 SYS_UWORD32 state, | |
4617 SYS_UWORD32 mask) | |
4618 { | |
4619 t_uart *uart; | |
4620 UNSIGNED break_length; | |
4621 | |
4622 /* | |
4623 * Check UART number. | |
4624 * A return is used to simplify the code. | |
4625 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4626 * flow control is not supported. | |
4627 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4628 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4629 */ | |
4630 | |
4631 if (uartNo != UAF_UART_1) | |
4632 return (FD_NOT_SUPPORTED); | |
4633 | |
4634 uart = &uart_parameters; | |
4635 | |
4636 /* | |
4637 * There is no case where FD_INTERNAL_ERR may be returned. | |
4638 * DCD is supported on C, D & E-Sample. The SA field is not supported because | |
4639 * DSR is not supported on all platforms. | |
4640 */ | |
4641 | |
4642 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4643 if (mask & (1 << SA)) | |
4644 #else | |
4645 if ((mask & (1 << SA)) || (mask & (1 << DCD))) | |
4646 #endif | |
4647 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4648 | |
4649 /* | |
4650 * Check if a break has to be sent. | |
4651 */ | |
4652 | |
4653 uart->break_length = (UNSIGNED) ((state >> BRKLEN) & 0xFF); | |
4654 | |
4655 if (state & (1 << BRK) && (mask & (1 << BRK))) { | |
4656 | |
4657 if (uart->break_length > FIFO_SIZE) | |
4658 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4659 | |
4660 else { | |
4661 | |
4662 uart->time_without_character = | |
4663 compute_break_time (uart->baudrate, uart->bits_per_char, 3); | |
4664 | |
4665 uart->break_to_send = 1; | |
4666 | |
4667 /* | |
4668 * If the TX FIFO is empty the break is send from this function | |
4669 * else the interrupt handler will send the break. | |
4670 */ | |
4671 | |
4672 if (READ_UART_REGISTER (uart, LSR) & TEMT) | |
4673 send_break(uart); | |
4674 } | |
4675 } | |
4676 | |
4677 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4678 /* | |
4679 * Disable sleep mode. | |
4680 */ | |
4681 | |
4682 WRITE_UART_REGISTER ( | |
4683 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4684 #endif | |
4685 | |
4686 /* | |
4687 * The CTS field is ignored if the X bit in the mask is set. In this case | |
4688 * the X bit controls CTS. | |
4689 */ | |
4690 | |
4691 if (mask & (1 << CTS)) { | |
4692 | |
4693 if (uart->flow_control_mode != fc_rts) { | |
4694 | |
4695 /* | |
4696 * As the RTS/CTS flow control is not selected, the X bit does not | |
4697 * control CTS. CTS needs only to be activated or deactivated | |
4698 * according to the value of the CTS field. | |
4699 */ | |
4700 | |
4701 if (state & (1 << CTS)) | |
4702 WRITE_UART_REGISTER ( | |
4703 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
4704 | |
4705 else | |
4706 WRITE_UART_REGISTER ( | |
4707 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
4708 | |
4709 } else if (!(mask & (1 << X))) { | |
4710 | |
4711 /* | |
4712 * The RTS/CTS flow control is selected but the X bit in the mask | |
4713 * is null. Then the CTS bit controls CTS and the receiver must be | |
4714 * stopped or started according to the state of the CTS bit. | |
4715 * The receiver is started only if it was not stopped by the driver | |
4716 * and if it was stopped by the application. | |
4717 */ | |
4718 | |
4719 if (state & (1 << CTS)) { | |
4720 | |
4721 if (!uart->rx_stopped_by_application) { | |
4722 | |
4723 if (!uart->rx_stopped_by_driver) | |
4724 stop_receiver (uart); | |
4725 | |
4726 uart->rx_stopped_by_application = 1; | |
4727 } | |
4728 | |
4729 } else { | |
4730 | |
4731 if ((!uart->rx_stopped_by_driver) && | |
4732 uart->rx_stopped_by_application) | |
4733 start_receiver (uart); | |
4734 | |
4735 uart->rx_stopped_by_application = 0; | |
4736 } | |
4737 } | |
4738 } | |
4739 | |
4740 /* | |
4741 * The DCD field is ignored if the SB bit of the mask is set. | |
4742 */ | |
4743 | |
4744 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4745 | |
4746 if (!(mask & (1 << SB)) && (mask & (1 << DCD))) { | |
4747 | |
4748 if (state & (1 << DCD)) { | |
4749 /* Turn on DCD */ | |
4750 #if (CHIPSET == 12) | |
4751 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4752 #else | |
4753 AI_ResetBit (ARMIO_DCD); | |
4754 #endif | |
4755 } else { | |
4756 /* Turn off DCD */ | |
4757 #if (CHIPSET == 12) | |
4758 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4759 #else | |
4760 AI_SetBit (ARMIO_DCD); | |
4761 #endif | |
4762 } | |
4763 } | |
4764 | |
4765 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4766 | |
4767 /* | |
4768 * Signals are set according to fields SA, SB and X states and flow | |
4769 * control: | |
4770 * | |
4771 * None RTS/CTS XON/XOFF | |
4772 * SA 0 (ns) 0 (ns) 0 (ns) | |
4773 * SB DCD DCD DCD | |
4774 * X ignore CTS XON:0 XOFF:1 (receiver) | |
4775 * | |
4776 * ns: signal not supported. | |
4777 * DCD is supported on C, D & E-Sample. | |
4778 */ | |
4779 | |
4780 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4781 | |
4782 if (mask & (1 << SB)) { | |
4783 | |
4784 if (state & (1 << SB)) { | |
4785 /* Turn on DCD */ | |
4786 #if (CHIPSET == 12) | |
4787 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4788 #else | |
4789 AI_ResetBit (ARMIO_DCD); | |
4790 #endif | |
4791 } else { | |
4792 /* Turn off DCD */ | |
4793 #if (CHIPSET == 12) | |
4794 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4795 #else | |
4796 AI_SetBit (ARMIO_DCD); | |
4797 #endif | |
4798 } | |
4799 } | |
4800 | |
4801 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4802 | |
4803 if ((mask & (1 << X)) && | |
4804 (uart->flow_control_mode != fc_none)) { | |
4805 | |
4806 if (state & (1 << X)) { | |
4807 | |
4808 if (!uart->rx_stopped_by_application) { | |
4809 | |
4810 if (!uart->rx_stopped_by_driver) | |
4811 stop_receiver (uart); | |
4812 | |
4813 uart->rx_stopped_by_application = 1; | |
4814 } | |
4815 | |
4816 } else { | |
4817 | |
4818 /* | |
4819 * The receiver is started only if it is not stopped by the driver | |
4820 * and if it is stopped by the application. | |
4821 */ | |
4822 | |
4823 if ((!uart->rx_stopped_by_driver) && | |
4824 uart->rx_stopped_by_application) | |
4825 start_receiver (uart); | |
4826 | |
4827 uart->rx_stopped_by_application = 0; | |
4828 } | |
4829 } | |
4830 | |
4831 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4832 /* | |
4833 * Re-enable sleep mode. | |
4834 */ | |
4835 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4836 /* | |
4837 WRITE_UART_REGISTER ( | |
4838 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4839 */ | |
4840 #endif | |
4841 | |
4842 return (FD_OK); | |
4843 } | |
4844 | |
4845 /******************************************************************************* | |
4846 * | |
4847 * UAF_InterruptHandler | |
4848 * | |
4849 * Purpose : Interrupt handler. | |
4850 * | |
4851 * Arguments: In : uart_id : origin of interrupt | |
4852 * interrupt_status: source of interrupt | |
4853 * Out: none | |
4854 * | |
4855 * Returns : none | |
4856 * | |
4857 ******************************************************************************/ | |
4858 | |
4859 void | |
4860 UAF_InterruptHandler (T_fd_UartId uart_id, | |
4861 SYS_UWORD8 interrupt_status) | |
4862 { | |
4863 | |
4864 t_uart *uart; | |
4865 | |
4866 /* | |
4867 * uart_id is not used. | |
4868 */ | |
4869 | |
4870 uart = &uart_parameters; | |
4871 | |
4872 uart->current_time = NU_Retrieve_Clock (); | |
4873 | |
4874 /* | |
4875 * Causes of interrupt: | |
4876 * - trigger level reached, | |
4877 * - character time-out indication, | |
4878 * - transmitter holding register empty, | |
4879 * - modem status. | |
4880 */ | |
4881 | |
4882 switch (interrupt_status) { | |
4883 | |
4884 case RX_DATA: | |
4885 | |
4886 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4887 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
4888 uart->dtr_change_detected[uart->index_it] = 0; | |
4889 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
4890 #endif | |
4891 read_rx_fifo (uart); | |
4892 | |
4893 // Disable Autobaud and lock baudrate upon first received character | |
4894 if (uart->autobauding != 0) | |
4895 { | |
4896 /* MSMSMSMS */ | |
4897 SYS_UWORD8 uasr; | |
4898 T_baudrate baudrate; | |
4899 T_bitsPerCharacter bpc; | |
4900 T_parity parity; | |
4901 | |
4902 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) | DLAB); | |
4903 | |
4904 | |
4905 uasr = READ_UART_REGISTER (uart, UASR); | |
4906 | |
4907 switch (uasr & 0x1F) | |
4908 { | |
4909 case 0x01: baudrate = FD_BAUD_115200; break; | |
4910 case 0x02: baudrate = FD_BAUD_57600; break; | |
4911 case 0x03: baudrate = FD_BAUD_38400; break; | |
4912 case 0x04: baudrate = FD_BAUD_28800; break; | |
4913 case 0x05: baudrate = FD_BAUD_19200; break; | |
4914 case 0x06: baudrate = FD_BAUD_14400; break; | |
4915 case 0x07: baudrate = FD_BAUD_9600; break; | |
4916 case 0x08: baudrate = FD_BAUD_4800; break; | |
4917 case 0x09: baudrate = FD_BAUD_2400; break; | |
4918 case 0x0A: baudrate = FD_BAUD_1200; break; | |
4919 default: /* no baudrate detected, abort for now */ | |
4920 return; | |
4921 } | |
4922 | |
4923 switch (uasr>>5 & 0x01) | |
4924 { | |
4925 case 0x00: bpc = bpc_7; break; | |
4926 case 0x01: bpc = bpc_8; break; | |
4927 } | |
4928 | |
4929 switch (uasr>>6 & 0x03) | |
4930 { | |
4931 case 0x00: parity = pa_none; break; | |
4932 case 0x01: parity = pa_space; break; | |
4933 case 0x02: parity = pa_even; break; | |
4934 case 0x03: parity = pa_odd; break; | |
4935 } | |
4936 | |
4937 UAF_SetComPar (UAF_UART_1, | |
4938 baudrate, | |
4939 bpc, | |
4940 sb_1, | |
4941 parity); | |
4942 | |
4943 uart->baudrate = baudrate_value[FD_BAUD_AUTO]; /* remember autobauding */ | |
4944 } | |
4945 | |
4946 break; | |
4947 | |
4948 case TX_EMPTY: | |
4949 | |
4950 fill_tx_fifo (uart); | |
4951 break; | |
4952 | |
4953 case MODEM_STATUS: | |
4954 | |
4955 check_v24_input_lines (uart); | |
4956 break; | |
4957 } | |
4958 } | |
4959 | |
4960 /******************************************************************************* | |
4961 * | |
4962 * UAF_CheckXEmpty | |
4963 * | |
4964 * Purpose : Checks the empty condition of the Transmitter. | |
4965 * | |
4966 * Arguments: In : uartNo: Used UART. | |
4967 * Out: none | |
4968 * | |
4969 * Returns : FD_OK : Empty condition OK. | |
4970 * FD_NOT_SUPPORTED: Wrong UART number. | |
4971 * FD_NOT_READY : Empty condition not OK. | |
4972 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4973 * | |
4974 ******************************************************************************/ | |
4975 | |
4976 T_FDRET | |
4977 UAF_CheckXEmpty (T_fd_UartId uartNo) | |
4978 { | |
4979 T_FDRET result; | |
4980 t_uart *uart; | |
4981 SYS_UWORD8 status; | |
4982 | |
4983 /* | |
4984 * Check UART number. | |
4985 * A return is used to simplify the code. | |
4986 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4987 * flow control is not supported. | |
4988 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4989 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4990 */ | |
4991 | |
4992 if (uartNo != UAF_UART_1) | |
4993 return (FD_NOT_SUPPORTED); | |
4994 | |
4995 /* | |
4996 * There is no case where FD_INTERNAL_ERR may be returned. | |
4997 */ | |
4998 | |
4999 result = FD_OK; | |
5000 | |
5001 uart = &uart_parameters; | |
5002 status = READ_UART_REGISTER (uart, LSR); | |
5003 | |
5004 /* | |
5005 * Checks if: | |
5006 * - the TX SW Buffer is empty, | |
5007 * - the TX HW FIFO is empty (THRE), | |
5008 * - the Transmitter Shift Register is empty (TEMT). | |
5009 */ | |
5010 | |
5011 if (!(TX_BUFFER_EMPTY (uart)) || | |
5012 !(status & THRE) || | |
5013 !(status & TEMT)) | |
5014 | |
5015 result = FD_NOT_READY; | |
5016 | |
5017 return (result); | |
5018 } | |
5019 | |
5020 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
5021 /******************************************************************************* | |
5022 * | |
5023 * UAF_DTRInterruptHandler | |
5024 * | |
5025 * Purpose : This function is only used on C & D-Sample. On this platform, the | |
5026 * DTR signal is controlled with an I/O. A change of state of this | |
5027 * signal is detected with an interrupt. This function is called when | |
5028 * this interrupt occurs. | |
5029 * | |
5030 * Arguments: In : none | |
5031 * Out: none | |
5032 * | |
5033 * Returns : none | |
5034 * | |
5035 ******************************************************************************/ | |
5036 | |
5037 void | |
5038 UAF_DTRInterruptHandler (void) | |
5039 { | |
5040 t_uart *uart; | |
5041 | |
5042 uart = &uart_parameters; | |
5043 | |
5044 /* | |
5045 * Read the state of DTR and change the edge to detect the next change | |
5046 * of DTR. | |
5047 */ | |
5048 | |
5049 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
5050 | |
5051 if (uart->dtr_level) | |
5052 { | |
5053 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
5054 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
5055 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); | |
5056 } | |
5057 else | |
5058 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
5059 | |
5060 /* | |
5061 * The reading callback function has to be called. But bytes received before | |
5062 * the change of state of DTR must be copied into the RX buffer before to | |
5063 * call it. | |
5064 */ | |
5065 | |
5066 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
5067 | |
5068 /* | |
5069 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
5070 * HISR will be activated. | |
5071 */ | |
5072 | |
5073 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
5074 uart->dtr_change_detected[uart->index_it] = 1; | |
5075 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
5076 read_rx_fifo (uart); | |
5077 | |
5078 } else | |
5079 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
5080 | |
5081 } | |
5082 #endif /* BOARD 8 or 9 or 40 or 41 */ | |
5083 | |
5084 #if (defined BTEMOBILE && (CHIPSET != 12)) | |
5085 /******************************************************************************* | |
5086 * | |
5087 * UAF_Exit | |
5088 * | |
5089 * Purpose : | |
5090 * | |
5091 * Arguments: In : uartNo: Used UART. | |
5092 * Out: none | |
5093 * | |
5094 * Returns : FD_OK : Successful operation. | |
5095 * FD_NOT_SUPPORTED: Wrong UART number. | |
5096 * FD_INTERNAL_ERR : Internal problem. | |
5097 * | |
5098 ******************************************************************************/ | |
5099 | |
5100 T_FDRET | |
5101 UAF_Exit (T_fd_UartId uartNo) | |
5102 { | |
5103 t_uart *uart; | |
5104 | |
5105 /* | |
5106 * Check UART number. | |
5107 * A return is used to simplify the code. | |
5108 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
5109 * flow control is not supported. | |
5110 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
5111 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
5112 */ | |
5113 | |
5114 if (uartNo != UAF_UART_1) | |
5115 return (FD_NOT_SUPPORTED); | |
5116 | |
5117 uart = &uart_parameters; | |
5118 | |
5119 /* | |
5120 * Delete the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
5121 * A return is used to simplify the code if an error occurs. | |
5122 */ | |
5123 | |
5124 if (NU_Delete_HISR (&(uart->rx_hisr_ctrl_block)) != NU_SUCCESS) | |
5125 return (FD_INTERNAL_ERR); | |
5126 | |
5127 if (NU_Delete_HISR (&(uart->tx_hisr_ctrl_block)) != NU_SUCCESS) | |
5128 return (FD_INTERNAL_ERR); | |
5129 | |
5130 if (NU_Delete_HISR (&(uart->v24_hisr_ctrl_block)) != NU_SUCCESS) | |
5131 return (FD_INTERNAL_ERR); | |
5132 | |
5133 /* | |
5134 * Delete the HISR used to send a break. | |
5135 * A return is used to simplify the code if an error occurs. | |
5136 */ | |
5137 | |
5138 if (NU_Delete_HISR (&(uart->break_hisr_ctrl_block)) != NU_SUCCESS) | |
5139 return (FD_INTERNAL_ERR); | |
5140 | |
5141 /* | |
5142 * Disable and then delete the timer used in the break HISR | |
5143 * A return is used to simplify the code if an error occurs. | |
5144 */ | |
5145 | |
5146 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
5147 NU_DISABLE_TIMER); | |
5148 | |
5149 if (NU_Delete_Timer (&(uart->break_timer_ctrl_block)) != NU_SUCCESS) | |
5150 return (FD_INTERNAL_ERR); | |
5151 | |
5152 /* | |
5153 * Disable and then delete the timer used in the detection of the escape | |
5154 * sequence. A return is used to simplify the code if an error occurs. | |
5155 */ | |
5156 | |
5157 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
5158 NU_DISABLE_TIMER); | |
5159 | |
5160 if (NU_Delete_Timer (&(uart->guard_period_timer_ctrl_block)) != NU_SUCCESS) | |
5161 return (FD_INTERNAL_ERR); | |
5162 | |
5163 /* | |
5164 * At that point, all HISRs and Timers have been successfully deleted. | |
5165 */ | |
5166 | |
5167 return (FD_OK); | |
5168 } | |
5169 #endif /* (defined BTEMOBILE && (CHIPSET != 12)) */ | |
5170 | |
5171 |