
FCDEV3B User’s Manual

Version 1.25, last edited 2019/03/11

1. Hardware setup

1.1. Power supply connection

The GSM modem chipset on the FCDEV3B is designed to run on battery power, typically a single LiIon

cell which produces a voltage of 4.2 V when fully charged, lowering as it discharges. However, the chipset uses

only LDO regulators and no switchers, hence when a fixedoutput power supply is used instead of an actual bat

tery, running at a lower voltage will result in less heat dissipation and thus greater reliability and longevity. The

standard recommended voltage for fixed supply operation is 3.6 V.

The power input connector on the FCDEV3B is a Weidmuller 1510460000 (reference designator J305, the

big orange connector readily stands out visually); there are several mating connector parts available from Weid

muller; Phoenix Contact also makes compatible connectors. Unless you have bought a readymade power supply

with your board, you will need to make your own power connection cable. If you are connecting a readymade

cable, the connector only goes in one way, but if you are wiring your own cable, you need to observe the polar

ity: the positive needs to be on pin 1 (facing inward), the negative needs to be on pin 3 (facing toward the edge

of the board), and the middle pin is unused.

If you are connecting an actual battery rather than a power supply, presumably to test truly mobile opera

tion with cell reselection, location updates and handovers, please note that the FCDEV3B will only draw power

from that battery and has no provision for charging. Therefore, you will need to use an external charger and con

nect a fully charged battery for the duration of your mobility tests.

1.2. Serial port connection

The primary means of controlling, programming and communication with the FCDEV3B is a pair of low

voltage serial interfaces, also known as UARTs. Each of the two UARTs is natively a lowvoltage interface

(2.8 V native logic levels, tolerant of 3.3 V, but NOT any higher voltages) and can be converted externally to

RS232 or to USB as needed for each user’s application.

With our standard firmware UART 0 (called MODEM in the Calypso chip documentation) provides a stan

dard ASCII AT command interface (see Chapter 2), and UART 1 (called IrDA in the Calypso chip docs,

although we are not using it for that purpose) provides a debug trace and command interface in TI’s binary

packet format (see Chapter 3). If you are going to be running your own firmware instead of ours, you can natur

ally use each UART however you like, but in any case you will need to have at least one UART connected in

order to make the modem board do anything useful.

The dual UART header on the FCDEV3B is J301, and it has the following pinout (pin 1 is toward the

power input connector):

GND 1 2 GND

TX_IRDA 3 4 TX_MODEM

RX_IRDA 5 6 RX_MODEM

NC 7 8 RTS_MODEM

NC 9 10 CTS_MODEM

If you are going to connect to both Calypso UARTs by way of an FT2232D USB dual UART, the conven

tion established by the Mother of FreeCalypso is that Calypso’s MODEM UART should be connected to

 2

FT2232D channel A, and the IrDA UART should be connected to channel B. Connect jumper wires as follows:

FT2232D Calypso

signal signal

ADBUS0 RX_MODEM

ADBUS1 TX_MODEM

ADBUS2 CTS_MODEM

ADBUS3 RTS_MODEM

BDBUS0 RX_IRDA

BDBUS1 TX_IRDA

Be sure to connect the ground as well! The FT2232D adapter boards sold by FreeCalypso have two ground

pins, one on the ADBUS side and the other on the BDBUS side, which naturally map to the two ground pins on

the J301 dual UART header on the FCDEV3B.

If you use an FT2232D adapter as described above to connect the FCDEV3B’s UARTs to a Linux PC or

laptop, you will have a single USB device with two ttyUSBx devices behind it; if you have no other ttyUSBx dev

ices, the Calypso’s MODEM UART (the one we use for the standard ASCII AT command interface) will appear

to your Linux host as /dev/ttyUSB0, and the Calypso’s IrDA UART (the one we use for the debug trace and

command binary packet interface) will appear as /dev/ttyUSB1.

1.3. Voice interfaces

The UARTs described in the previous section are sufficient for all data, SMS and ‘‘hacking’’ applications except

voice. While the AT command interface provided by our standard firmware and accessible via those UARTs can

dial and answer GSM voice calls, actually hearing or otherwise receiving the voice call downlink and sending

your own voice into the call uplink requires additional interfaces. There are two voice interface options available

on the FCDEV3B:

• The standard analog earpiece and microphone interfaces provided by the Calypso+Iota chipset have on

board loudspeaker driver and microphone input circuits connected to them on our FCDEV3B. You can

connect a loudspeaker to twopost header J312 and an electret condenser microphone to twopost header

J313, and then use those acoustic transducers to exercise GSM voice calls. See Appendix A for more

information.

• The Calypso chip has a poorly documented provision for a digital voice PCM interface, and this interface

is brought out to a header on the FCDEV3B. This interface has not been fully reverseengineered yet and

should be regarded as experimental at the present. See Appendix B for more information.

1.4. Antenna connection

The goldplated SMA connector J308 that hangs over the edge of the board is where you need to connect the

GSM antenna; the modem will not receive any GSM signals without an antenna connected. Alternatively one

can connect a coaxial cable going to a base station simulator.

1.5. SIM socket

The SIM socket on the board is a C&K CCM033013 (reference designator J302); it accepts the 2FF classic SIM

size that culturally corresponds to traditional GSM/2G.

1.6. Power on/off control

Having battery voltage present at power input connector J305 will not in itself cause the Calypso chipset to

power on and boot up — it also needs to sense a low on the PWON control input. The FCDEV3B provides two

ways to control the poweron sequence:

• When battery power is applied to the board but the green LED is off, pressing the PWON button will

cause the chipset to power on and boot up, and the green LED will turn on.

• If the board is to be used in an unattended environment where requiring a human to press a button is not

acceptable, one can put a shorting block on twopost jumper header JP1. This twopost header is wired in

 3

parallel with the PWON button, hence putting a shorting block on it is equivalent to having the button per

manently held down. If the PWON button is permanently held down or JP1 is shorted, the chipset will

power on and boot immediately as soon as battery power is applied.

The green LED on the board indicates the on or off state of the chipset: this LED lights up when the poweron

control in the Iota chip is in the switchedon state, and is off otherwise. Once the chipset has powered on and

the green LED is lit, a return to the switchedoff state can be commanded only through software, and if JP1 is

shorted, a software poweroff command turns into a reset operation as the switchoff will be immediately fol

lowed by another switchon.

There is also a RESET button on the board that shorts the nTESTRESET signal to ground; pressing this

button will cause the chipset to switch on and reset irrespective of its previous state.

1.6.1. Sleep mode considerations

If you are going to operate the board with JP1 shorted for automatic unattended switchon, you need to be

aware of sleep mode implications. Our current V2 boards have working Calypso sleep modes, and our current

firmware versions make use of all of them. In the most complete power saving mode known as deep sleep,

which is normally entered between paging wakeup times when the modem is camped on a cell but is otherwise

idle, the main 26 MHz VCXO that provides all system clocks is stopped, leaving only the 32.768 kHz clock pro

vided by a separate crystal oscillator in the RTC power domain. During these deep sleep times the system

power consumption is reduced to the absolute minimum, and normally this deep sleep mode is accompanied by

the LDO regulators in the Iota ABB being switched into their own sleep modes as well, to avoid power waste

within the regulators themselves. However, the latter ABB sleep mode is not possible when the PWON control

input is held low (it is a wakeup condition for the ABB), hence if JP1 is shorted, our firmware won’t put the

Iota ABB into its sleep mode: it will still put the Calypso into deep sleep and stop the VCXO, but no ABB sleep

mode.

2. AT command operation with standard firmware

Our boards are shipped from the factory programmed with a FreeCalypso firmware image that provides

standard end user AT modem functionality with a full commercial product level of stability; at the present time

this stable production firmware is FC Magnetite built in the hybrid configuration, featuring our new TCS3based

full source version of the G23M protocol stack, replacing the old blob version from Openmoko.

To use the FCDEV3B as a standard AT modem, connect the power supply, one or both UARTs (only

UART 0 is needed for this mode of operation) and the antenna, insert a valid SIM with an associated active ser

vice from your local GSM network operator into the SIM socket, and press the PWON button or short JP1. The

green LED will light up, the modem firmware will boot, and a working AT command interface will appear on

the MODEM UART. You can then use your choice of terminal program on whatever host computer you are

using to drive the FCDEV3B to talk standard AT commands to the modem; the default baud rate is 115200 bps

and you should have hardware RTS/CTS flow control enabled. (If the host system you are using has no

RTS/CTS flow control capability and you leave the CTS_MODEM signal on J301 unconnected, the pulldown

resistor on the FCDEV3B will present a CTSasserted state to the Calypso UART, and the AT command inter

face will work correctly as long as your host does not miss any output from the modem.)

2.1. Effect of deep sleep on the AT command interface

When you start familiarizing yourself with the AT command interface on our current V2 boards using an

interactive terminal program, you will immediately notice an effect of sleep modes: when you type your com

mands manually, one character at a time at typical human typing speed, the very first character you type after

powerup or after a period of idleness (10 s or more) will be ‘‘swallowed’’, and then the modem will wake up

and accept your subsequent typing, for as long as the delay between successive characters does not exceed 10 s

— and if you type nothing for 10 s, the modem goes back to sleep and needs to be awakened again with a

‘‘throwaway’’ press of the carriage return key.

This seeminglyerratic behaviour of the AT command interface is an effect of a power saving mode called

deep sleep, and this deep sleep mode is necessary in order to reduce the modem’s power consumption during

idle times to an absolute minimum, producing the long battery life which mobile phone users have rightfully

 4

come to expect. However, this deep sleep mode also has a uservisible effect on the AT command interface: the

main 26 MHz VCXO is stopped during deep sleep, leaving only a 32.768 kHz clock, and the latter clock is not

fast enough to allow Calypso UARTs to register incoming characters. If the external host sends some command

to the modem on the AT command UART channel while the modem is in deep sleep, a special asynchronous cir

cuit in the Calypso will detect the presence of ‘‘some activity’’ on the UART data line and initiate the wakeup

sequence, but the process of waking up from deep sleep takes about 55 ms, and all characters sent to the modem

during this time will be lost.

As often happens in all of engineering, there are no perfect solutions, only tradeoffs and compromises,

and this case is no exception: the user must choose between either making their modem control software sleep

aware with a special protocol, or disabling deep sleep and accepting greater power consumption during idle states

in exchange for host interface simplicity.

2.1.1. Making modem control software sleepaware

If you are developing your own host system software for talking AT commands to FreeCalypso modems, and

you wish to make your modem control software compatible with deep sleep to allow the most power saving, you

need to implement the following protocol:

• The first time you send anything to the modem after powerup or long idle, you need to begin by sending

a harmless donothing command (for example, "AT\r" or just a carriage return character by itself) which

the modem may or may not receive and act upon depending on whether it happens to be awake or asleep

at that moment, which you cannot predict or control. After this dummy wakeup command, insert a 60 ms

delay to ensure that the modem has had enough time to wake up if it was asleep, and only then send your

actual intended command.

• During your ongoing communication with the modem, you need to keep track of how much time has

elapsed since your last transmission to the modem on the UART channel. If less than 10 s has elapsed

since the last hosttomodem transmission, you can safely send further commands to the modem without

additional dummy wakeup commands or delays because the modem is not allowed to enter deep sleep at

this time, but if the elapsed time since the last command transmission is 10 s or more, then the modem is

allowed to enter deep sleep at unpredictable times, and you need to repeat the wakeup sequence (a do

nothing command followed by a 60 ms delay) before sending the next command. For safety margin, you

should set the actual threshold in your software to a little under 10 s, for example, 9.5 s.

• If you are using the GSM 07.10 MUX, the most straightforward wakeup sequence is to send an extra

HDLC 0x7E flag (which will do nothing if the modem was awake and therefore receives it), then a 60 ms

delay, then whatever actual HDLC frame you were going to send.

Please note that the 10 s UART activity timer in the firmware which prevents the modem from going into deep

sleep is only restarted when the host sends something to the modem, and is NOT started or restarted on modem

tohost transmissions. The modem may be configured to send unsolicited notifications to the host in idle mode

on cell reselection events or when the received signal strength changes, and by not running the UART activity

timer on such events, we avoid going without deep sleep for 10 s every time. The host interface implication is

that your software must consider only the time of its last transmission to the modem, and NOT consider the last

time it received something.

2.1.2. Disabling deep sleep

If you would rather disable deep sleep to get a quirkfree AT command interface, issue an AT%SLEEP=5

command. This command will disable deep sleep while keeping the other two sleep modes (big and small sleep)

which do not stop the 26 MHz VCXO and therefore have no effect on the AT command interface. Because the

modem is initially in deep sleep upon powerup, you need to first send a dummy carriage return, wait 60 ms, and

then send the actual "AT%SLEEP=5\r" command — but you only need to do it once at boot time, and then the

AT command interface becomes free of any timing quirks.

To restore the default sleep mode configuration with all 3 sleep modes enabled, issue an AT%SLEEP=4

command. This sleep mode configuration setting is strictly volatile and does NOT persist across power cycles or

reboots.

 5

2.1.3. Board revision differences

This entire section discussing deep sleep and how to either deal with it or disable it is applicable only to

our current FCDEV3B V2 boards. Our first FCDEV3B V1 boards (the ones that were sent out to crowdfunding

contributors in 2017) have a hardware design defect (an incompatibility between TI’s reference design and the

reset timing requirements of the highcapacity Spansion flash chip that was only discovered after the boards were

built) that requires disabling all sleep modes and not just deep sleep. Our production firmware releases prior to

2019 (the ones that were shipped with those V1 boards) were built in the no sleep configuration (all sleep modes

disabled by default on boot), and we also have a special nosleep build of our current 20190128 fw version to

allow these V1 boards to run uptodate firmware.

Issuing an AT%SLEEP=n command with n equal to anything other than 0 (disable all sleep modes) on an

FCDEV3B V1 board (any fw version) will reenable sleep modes, but doing so will result in unstable operation

with random hangs or spontaneous selfreboots resulting from the flash chip being subjected to improper reset

timing as the Calypso goes into and out of small sleep.

2.2. Connecting to a GSM network

To bring up the SIM and radio interfaces and connect to your local GSM network, your AT session should

begin with the following commands:

AT+CMEE=2 −− enable verbose error messages

AT+CFUN=1 −− enable SIM and radio interfaces

AT+COPS=0 −− connect to the default cellular operator

Our TIbased AT modem implementation differs from general industry practices in that our modem does

not automatically turn on its radio and connect to the first available GSM network immediately on powerup,

instead it must be explicitly commanded to do so with AT+CFUN=1 and AT+COPS. This quirk of our modem

behaviour is not an original FreeCalypso invention, instead we have inherited it from TI and Openmoko.

Openmoko’s embedded GSM modem in their Neo 1973 and Neo FreeRunner smartphones worked the same way,

but Openmoko hadn’t invented it either: we have one of TI’s original development boards (called DSample) that

came with a firmware image (pure TI) built in 2002, and that ancient fw also works the same way. We have no

plans to change this behaviour in FreeCalypso: even though it differs from general industry practices, our way

gives more control to the user.

You can also sandwich additional configuration commands between AT+CFUN=1 and AT+COPS: for

example, AT+CREG=1 to make the modem report registration status changes or AT+CNMI=2,1 to get

notifications of incoming SMS.

2.3. Exercising voice and CSD calls

Once you are connected to a GSM network as above, both voice and CSD calls can be dialed with the clas

sic ATD command: ATDnumber; (with semicolon) for voice or ATDnumber (no semicolon) for CSD. Incoming

calls can be answered with ATA.

If you are going to be exercising voice calls as opposed to CSD, you will need to issue some additional

nonstandard AT commands of our own invention to enable the right voice interface (see §1.3):

• If you wish to use the onboard loudspeaker driver to hear the call downlink audio, you need to enable it

as follows:

AT@SPKR=1

The default ABB volume control setting is −6 dB; to set the maximum volume of 0 dB, issue the follow

ing command:

AT+CLVL=255

• If you wish to use the digital voice PCM interface on MCSI pins (see Appendix B), you need to switch the

voice path in the Calypso DSP as follows:

 6

AT@VPATH=2

2.4. Sending and receiving SMS

Our TIbased FreeCalypso modem supports text and PDU modes for SMS as specified in GSM 07.05.

Standard AT command AT+CMGF selects between these two modes, and as required by the spec, PDU mode is

the default. Text mode (which needs to be selected with AT+CMGF=1) is intended to be usable directly by a

human user from a dumb terminal without any special SMS software, but it has one major limitation: only plain,

nonconcatenated (no UDH) SMS in GSM 03.38 7bit encoding can be sent and received in GSM 07.05 text

mode in a directly humanreadable form. As soon as someone sends you a concatenated SMS or any SMS

encoded in UCS2, a standardscompliant AT modem has no choice but to present it in raw hex form, at which

point all direct human readability goes out the window. Because you can only control your outgoing SMS and

cannot practically control what kind of SMS other people will send you, practical SMS usage requires special

SMS software that communicates with the AT modem in GSM 07.05 PDU mode.

Many FOSS programs have been written over the years to send and receive SMS via an AT command

phone or modem; because each vendor’s AT command implementation has its own quirks and because we did

not want to be dependent on someone else’s software written for some other phone or modem manufacturer’s

quirks, we have developed our own SMS tools (called FreeCalypso User Phone Tools) which officially work

with our FreeCalypso AT modems. FC User Phone Tools are included as part of our FC host tools package.

2.4.1. Bogus programming by SIM card issuers

If you still wish to use SMS manually in text mode without special software despite the limitations of this

mode, please be aware that some SIM card issuers have misprogrammed their cards in a way that breaks SMS

sending and writing operations in text mode. Please look at the description of the AT+CSMP command in the

GSM 07.05 spec: the settings manipulated by this command control SMS sending and writing operations in text

mode, and these settings are stored on the SIM. A reasonable setting would be AT+CSMP=1,,0,0, or perhaps a

variant with some validity period setting, but one Austrian prepaid SIM card issuer has been caught selling SIMs

with PID and DCS parameters set to 255, which is completely bogus and breaks SMS sending and writing opera

tions in text mode. Manually setting AT+CSMP=1,,0,0 clears the breakage.

2.5. Exercising GPRS

Our TIbased FreeCalypso modem fully supports GPRS in addition to GSM. Our GPRS implementation

has been tested by connecting to the mobile Internet service of our local operator (TMobile USA) via an

FCDEV3B modem with the following sequence of steps:

1. Configure the APN with AT+CGDCONT

2. Establish the data connection with ATD*99***1#

3. Run Linux pppd

The above procedure has been successful with the versions of the Linux kernel and pppd that came with

Slackware 13.37, but has not yet been successful with Slackware 14.2 — more investigative work is needed for

the latter.

2.6. Other AT modem functionality

Our modem implementation which we’ve inherited from TI also includes support for supplementary ser

vices, fax calls, GSM 07.10 MUX and a lot of other functionality which we have not thoroughly exercised yet.

Please feel free to play with all of these functions; the source code for our modem firmware would be your best

guide as to what is there to be played with.

2.7. Hardware and firmware identification

Our modem implements standard AT+CGxx commands for manufacturer, model and revision

identification; the strings returned by these commands are not hardcoded in our firmware, but are programmed

in the modem’s flash file system at the factory (see §3.4), allowing product identification beyond the firmware.

 7

A side effect of this design decision is that these standard AT+CGxx commands identify only the hardware and

not the firmware, and AT+CGMR in particular gives only the hardware revision. Getting the firmware version

requires using a nonstandard AT command that was originally added by TI and subsequently modified for

FreeCalypso.

You can query the running firmware for its version ID string with the AT%VER command; the same ver

sion ID string is also emitted as part of the boottime debug trace output on the other UART (see Chapter 3) and

can be seen in the firmware binary image with strings(1). This version ID string includes the firmware family

name (currently Magnetite), the build configuration (currently hybrid, previously l1reconst), the corresponding

source version and the build timestamp.

2.7.1. FreeCalypso IMEIs

Per GSM standards, every phone or modem that can connect to public GSM networks must have an IMEI

number that uniquely and unambiguously identifies the device make and model (the first 8 digits) and the indivi

dual physical device unit (the complete number). As the manufacturer of FreeCalypso hardware products, we

have diligently gone through the official process for IMEI range allocation, and we now have an officially allo

cated TAC (the first 8 digits of the IMEI) that officially belongs to our FreeCalypso FCDEV3B product. Each

individual FreeCalypso device unit sold by our company is shipped with a fully legitimate and worldunique

IMEI number assigned out of our officially allocated range, and our devices are thus fully fit for end user opera

tion on public GSM networks.

Because our FreeCalypso IMEIs are now fully legitimate, you can stand tall and proud before your local

GSM network operator as a user of the world’s first cellular modem product whose manufacturer officially pub

lishes its complete implementation source code and encourages users to study and understand it: if a GSM net

work operator looks up the IMEI of the connected device in the official database to see what kind of device it is,

they will see that it is a FreeCalypso FCDEV3B modem, made by Falconia Partners LLC, with Mother

Mychaela listed as the technical contact.

To query your FreeCalypso modem for its IMEI, issue an AT+CGSN command. This command will

return the IMEI as a 15digit string in the standard format, consisting of 14 content digits followed by a com

puted Luhn check digit. Alternatively, you can issue an ATD*#06# command, which will return a 17digit

string: 14 content digits of the IMEI, the Luhn check digit on those IMEI digits, and 2 digits of SV. The SV

digits are supposed to identify the software version, and the assignment of these digits is an exclusive prerogative

of whichever organization owns the TAC in the first 8 digits.

2.8. Battery voltage monitoring

If you are going to power your board from a Liion battery cell in combination with an external charger,

you will need a way to see the state of charge of your battery, so you know when it is time to recharge it.

Because pure modems like FCDEV3B (as opposed to complete phone handsets) have no builtin battery charging

circuits, our firmware for the modem configuration does not include our FCHG battery charging and monitoring

driver. We do, however, include a simple custom AT%VBAT command that returns the battery voltage in mV,

as measured by the MADC block in the Iota ABB.

2.9. Cleanly ending an AT modem session

If you wish to cleanly shut down the modem’s activities on the GSM network and tell the network that

you are signing off (IMSI detach), issue an AT+CFUN=0 command. Once you have cleanly disconnected from

the network, you can power the modem off with an AT@POFF command — the green LED on the board will

go out. However, if JP1 is shorted, a true poweroff is not possible and the AT@POFF will effect a reboot

instead, by way of the VRPC block in the Iota chip going through a switchoff sequence immediately followed

by another switchon from the grounded PWON input.

Alternatively the AT@RST command can be used to effect a firmware reboot by way of a watchdog reset

irrespective of whether JP1 is shorted or not.

 8

2.9.1. Poweroff by button

With recent FreeCalypso fw versions it is also possible to command a poweroff (equivalent to the

AT@POFF command) by pressing the PWON button, holding it down for 1 s, and then releasing it. (This provi

sion was originally implemented back at TI, but it was broken for nonUI modem configurations until we fixed

it.) Naturally this option is not possible if PWON is permanently grounded with a shorting block on JP1 — and

the latter condition is NOT misinterpreted as a poweroff request.

Please note, however, that a poweroff by button is strictly equivalent to the lowlevel AT@POFF com

mand: it is a ‘‘raw’’ poweroff without an IMSI detach or any other higherlevel cleanup. Therefore, it is not

an substitute for proper cleanup by external modem control software, instead it allows you to power the modem

off without unplugging the power supply if you accidentally powered it on with a button press without a host

computer connection. Because our modem does not bring up its radio on its own without a host command, there

is no need for higherlevel cleanup in the case of an accidental poweron without a host computer connection.

3. FreeCalypso host tools and other firmware versions

Regular operation of a FreeCalypso modem via standard AT commands as described in the previous chapter does

not require any special software — one can use any host computer or even a dumb terminal. However, if you

have a GNU/Linux PC or laptop or any other Unixbased or Unixlike host system on which you can install

FreeCalypso host tools, you get a whole bunch of extra toys to play with:

• A tool for flashing firmware images into the modem, so you can flash new firmware updates or images you

have built yourself;

• Tools for decoding and displaying and/or logging the debug trace output from a running firmware, so you

can see what the fw is doing when you ATcommand it to perform this or that GSM operation;

• Tools for sending debug commands to the running firmware, so you can peek and poke registers and

memory locations, enable additional debug traces and much more;

• Tools for manipulating the modem’s flash file system;

• Many more hacks you can discover by studying the source code and docs included in the FC host tools

package.

To gain all of these abilities, you need to download and install our FreeCalypso host tools package; the current

version as of this writing is fchosttoolsr10 and the installation procedure involves compiling from source. The

rest of this chapter will assume that you have FC host tools installed and working.

It also needs to be noted that our FreeCalypso host tools significantly predate FC hardware, i.e., most of

our tools were developed long before we had any hardware of our own, when we were limited to hacking vari

ous preexisting Calypso devices. Keeping this historical fact in mind will make it easier to make sense of much

of the documentation included with the tools.

3.1. Reflashing the firmware with fcloadtool

The utility for performing raw flash operations on FreeCalypso devices is fcloadtool. On sensible devices

like our FCDEV3B that have the Calypso boot ROM enabled by the board wiring, fcloadtool can gain flashing

access to the device through either of its two UARTs completely irrespective of its previous state, i.e., it is

impossible to brick the board no matter what you do to its flash.

Out of the many things you can do with an FCDEV3B board, flashing with fcloadtool is unusual in that it

works exactly the same whether you go through UART 0 or UART 1 (/dev/ttyUSB0 or /dev/ttyUSB1 in

the common FT2232D USB setup). Most other workflows work only with one UART or the other: for the stan

dard ASCII AT command interface with our standard firmwares you need UART 0, and for the RVTMUX

binary packet interface (rvtdump, rvinterf, fcshell, fcfsio, fctmsh) you need UART 1. But flashing with

fcloadtool is the unusual exception in that it works exactly the same through either UART.

If you are seeking to flash a new firmware release from FreeCalypso, the tarball package with the firmware

update should contain a file named flashscript. It is a command script for fcloadtool that contains the correct

sequence of flash erase and flash program commands for flashing the new firmware image. To flash a firmware

update using this included script, cd to the directory containing the flashscript file and the firmware image it

references, and run a command of the following form:

 9

fcloadtool h fcfam B812500 /dev/ttyUSBx flashscript

The B812500 option tells fcloadtool to use the fastest serial baud rate of 812500 bps, which is a GSM

specific baud rate derived from the 13 MHz clock used in the Calypso and other GSM devices. This non

standard (outside of the GSM world) high baud rate is supported by the FT2232D adapter commonly used with

FCDEV3B boards, but may not be supported by other kinds of serial hosts. To use the more standard 115200

baud rate, omit the B option:

fcloadtool h fcfam /dev/ttyUSBx flashscript

If you are using the PWON button to power on and boot your board, i.e., if you don’t have a jumper on

JP1, the most proper way to perform the above flashing operation is to have the board in the ‘‘powered but

switchedoff’’ state, i.e., with the power supply connected but the green LED off, run the fcloadtool command

in this state, and as fcloadtool sends its beacons down the serial line, press the PWON button. The Calypso

boot process will be interrupted and diverted at the boot ROM, fcloadtool will feed our FreeCalypso loadagent

to the latter and use this agent to perform the flash operations. The board will be automatically powered off at

the end, i.e., the green LED will go out when the operation is finished.

If you need to perform an fcloadtool operation when there is a jumper on JP1 or when the board is in a

hung state, run the fcloadtool command and press the RESET button on the board instead of PWON.

It is also possible to use fcloadtool interactively, without running a script:

fcloadtool h fcfam /dev/ttyUSBx

In this mode the tool will stop once it has got loadagent running on the target, and present a loadtool>

prompt to the operator. You can then execute various commands including flash operations interactively; type

help at the loadtool> prompt to get started.

3.2. Playing with the RVTMUX binary packet interface

While UART 0 carries a standard ASCII AT command interface with our firmwares, there is an additional binary

packet interface called RVTMUX presented on UART 1. This interface is intended for development and debug

ging, not for enduse applications, i.e., the latter should NOT depend on having this second UART available, but

for developers and tinkerers it enables the following capabilities:

• The firmware continuously emits a fairly large amount of debug trace output on this interface; this debug

trace output can be captured, decoded from binary packets into ASCII and displayed and/or logged with

our rvtdump utility.

• A number of debug, development and test mode commands can be sent to the firmware in the form of

RVTMUX binary packets. GPF ‘‘system primitive’’ commands can be sent through fcshell and are pri

marily useful for selectively enabling various more verbose debug traces in the G23M protocol stack. TM

and ETM commands can be sent through fctmsh; many of them invoke L1 and RF test modes which you

should never invoke unless you wish to operate a rogue transmitter or jammer, but some ETM commands

like memory and register peeks and pokes can be useful in ordinary firmware debugging sessions.

• The modem’s flash file system can be manipulated with full read and write access over RVTMUX using

our fcfsio utility.

• As a new feature added in FreeCalypso, AT commands can also be sent over RVTMUX, appropriately

wrapped in RVTMUX binary packets; our fcshell utility performs this feat. This mechanism can only be

used for voice and SMS AT commands which do not involve data connections; for CSD and GPRS you

need to use the main AT command interface on UART 0.

3.3. Compiling your own firmware versions

If you are interested in tinkering with our FreeCalypso modem firmware and building your own versions from

source, with or without your own modifications, you have two different source trees to choose from as your start

ing point:

 10

• FC Magnetite is our official mainline firmware development tree. Our production fw releases are built

from Magnetite, but if you are compiling it yourself from source, you can select many different

configurations that differ from our production builds even without changing a single line in the actual

source.

• FC Selenite is an experimental firmware source tree that replaces our earlier FC Citrine deadend code.

Like its predecessor, FC Selenite offers the option of building with gcc (instead of TI’s proprietary

TMS470 compiler used for our stable production builds), and in the gccbuilt configuration it is totally free

of any blobs. However, this configuration is strictly experimental, not production, and still exhibits a lot of

unfixed breakage resulting from the use of a compiler that was never envisioned or considered by the origi

nal developers. Fixing all of that breakage and getting Selenitegcc to work as well as Magnetite is left as

a project for any interested community members.

3.3.1. Running firmware out of RAM without flashing

A special feature of our FCDEV3B hardware not present on most of the preexisting Calypso devices is

our large RAM (8 MiB) which allows any of our firmwares to run entirely out of RAM without flashing. The

primary intended mode of usage is keep a production firmware image in the flash while running experimental

builds out of RAM.

When you build any of our firmwares from source, you can build either a flashable image or a RAM

loadable one. The two image types are not interchangeable: if you have a flashable image (fwimage.bin or

fwimage.m0 from a Magnetite or Selenite build or flashImage.bin from a Citrine build), you cannot run

that same image out of RAM, instead you need to build an appropriate RAMloadable image: ramimage.srec

for Magnetite and Selenite or ramImage.srec for Citrine. (RAMloadable images are always in SREC for

mat.)

Once you have a *.srec RAMloadable image, you can load and run it with the fcxram utility. Just

like flashing with fcloadtool, the initial steps performed by fcxram work exactly the same whether you go

through UART 0 or UART 1, but your choice of UART for this operation needs to be made with the rest of the

workflow in mind:

• If you are going to run the XRAM download over UART 0, your fcxram invokation command should

take the following form:

fcxram h fcfam /dev/ttyUSBx ramimage.srec

The sequence of PWON or RESET manipulations needed to initiate the operation is the same as for flash

ing with fcloadtool. Once the XRAM image is loaded, it will start running, and if the serial port used by

the fcxram process corresponds to UART 0, then the newly loaded firmware’s ASCII AT command inter

face will appear when fcxram drops into the tty passthrough mode. Of course one can also have an

rvinterf process running in another window, waiting for RVTMUX debug trace output on the other UART.

• If you are going to run the XRAM download over UART 1, your fcxram invokation command should

take the following form:

fcxram h fcfam /dev/ttyUSBx ramimage.srec rvinterf

Note the addition of rvinterf after the *.srec image name. This additional command line argument

instructs fcxram to pass the serial channel to rvinterf when the loaded image starts executing; such passing

is appropriate when the XRAM download is done over UART 1, as the newly loaded firmware will

immediately start emitting debug traces in RVTMUX binary packet format on this UART.

When run as shown above, fcxram will use the standard 115200 baud rate for the XRAM image transfer. If

you are using an FT2232D USB adapter or some other serial host that can support GSMspecific high baud rates,

you can use the B812500 option to speed up the image transfer over the serial line.

3.4. Flash file system and its content

In addition to the main firmware image which must be reflashed as a single unit when it needs to be

changed, the flash memory on the FCDEV3B also holds a file system structure — the FFS. All TIbased GSM

 11

mobile station firmwares require a flash file system to be available for both reading and writing in normal opera

tion; the initial creation (formatting) of this FFS is a special operation which TI intended to be performed only

once in the lifetime of each individual device, as part of the factory production line procedures.

The makers of various historical Calypsobased devices have used the FFS facility in different ways, and

in the FreeCalypso family of projects we have likewise created our own unofficial ‘‘aftermarket’’ FFS

configurations when running our firmwares on alien hardware. But on our own FCDEV3B the FFS area of the

flash is used as follows:

• Every FCDEV3B unit sold by us has had its radio tract individually calibrated at the factory, and the result

ing calibration values are stored in the FFS. These RF calibration tables are required for correct radio

operation; if they are missing or corrupted, the modem will usually fail to find a serving cell (frequency

burst acquisition will fail) and never reach the point of trying to transmit anything, but if an uncalibrated

modem does manage to pick up a cell and starts transmitting (the usual Location Update when registering

to a network), its transmissions will be out of spec and may draw the wrong kind of attention from radio

regulators.

It thus follows that the factorywritten RF calibration tables in the FFS should be treated as readonly by

all ordinary users and firmware tinkerers; recalibration or any changes to these tables should only by done

by those who really know what they are doing and have the necessary RF test equipment.

• Identification strings naming the hardware manufacturer, the device model and the hardware revision have

also been programmed in the FFS at the factory; these strings are returned in response to AT+CGxx

queries by the standard firmwares. There is nothing to stop you from changing these strings, but doing so

should never be necessary and is discouraged.

• The factoryassigned IMEI (or more precisely, the IMEISV to be used by our official firmwares) is stored

in the FFS. Because it is just a regular file, there is nothing to stop you from changing it, but we whole

heartedly ask you to please please please not do it: now that we have obtained fully official and legitimate

IMEIs for our modems and no longer need to borrow numbers from old outofbusiness manufacturers’

ranges, there is no longer any need to change your IMEI to anything other than our factoryassigned

number. We strive very hard to get our FreeCalypso modems accepted as fully legitimate by the main

stream (nonFOSS) GSM community of operators, regulators and related entities, and having users change

their IMEIs for no good reason would cause severe harm to the mission of our project.

• The audio mode configuration tables for the AT@AUL command are stored in the FFS. We do program

these audio mode config files into the FFS of our devices on the production line, but these configurations

are expected to change and evolve with new developments just like the firmware, hence FCDEV3B users

need to be able to install any potential updates to these files themselves.

• If you wish to play with the ringtone melody generator built into the Calypso (the Melody E1 function

implemented in the DSP ROM code and driven by the firmware’s Layer 1 and Audio Service components),

you will need to upload the E1format melody files for it into the FFS before you can play them. The

voice memo recording and playback facilities similarly use the FFS.

• There are a bunch of files which our TIbased firmwares write into the FFS on their own in normal opera

tion; you can ignore these files unless you wish to put on the hat of a firmware developer.

The host utility for reading and writing the FFS of FreeCalypso devices is fcfsio. It is an in vivo tool rather

than an in vitro one: it works by communicating with the running firmware on the board through the RVTMUX

interface on UART 1 (see §3.2), either by connecting to an alreadyrunning rvinterf process or by launching its

own private instance of rvinterf (the actual RVTMUX binary packet communication engine). Please refer to

FreeCalypso host tools documentation for usage details.

3.4.1. Updating the audio mode configuration files

The source for the audio mode config files resides in the fcaudioconfig Mercurial repository. The

configuration bits in question need to be compiled from source into binary form before they can be uploaded into

the FFS of an FCDEV3B or other FreeCalypso device, but the tools needed for this compilation are included in

the same FC host tools package as the fcfsio utility you will need for the actual upload, hence no additional

dependency is created. Please see the README file inside the fcaudioconfig repository for further instructions.

 12

3.4.2. FFS corruption, backup and restore

The fact that the flash file system of FreeCalypso GSM devices like the present FCDEV3B contains RF

calibration values which cannot be recreated without highly specialized RF test equipment leads to the require

ment that this FFS must never get corrupted. TI’s FFS implementation has been specifically designed to with

stand and gracefully recover from any possible firmware crashes or power cuts without getting corrupted, and

while some historical versions may have had bugs in them (the proprietary fw of the Pirelli DPL10 phone is

known to corrupt its FFS on occasion), we are reasonably confident that our version does not suffer from such

bugs: we are using the same version of the FFS implementation code as Openmoko, and through all of the years

of Openmoko there has not been a single report of the modem’s FFS getting corrupted.

There is, however, a difference in that we produce and market our products with the specific intent that

they will be extensively tinkered with at the low level, rather than sell lockeddown phones or declare the

modem to be a ‘‘thou shalt not enter’’ forbidden area like Openmoko did. Thus even if we take the stance that

none of our officially released firmware versions will ever corrupt the FFS, the fact that our products are

specifically intended for lowlevel tinkering implies that accidental FFS corruption can easily result from operator

error on the part of such a lowlevel tinkerer. Therefore, if you are going to tinker extensively with the flash on

your board, you should make a backup of its FFS with the original factory RF calibration values.

To make a backup of the FFS at the raw flash level, run fcloadtool in interactive mode as shown in §3.1.

Once you are at the loadtool> prompt, issue the following command:

flash2 dump2bin myffsbackup.bin 0 0x200000

To restore an FFS backup made as above, issue the following commands at the loadtool> prompt:

flash2 erase 0 0x200000

flash2 programbin 0 myffsbackup.bin

Finally, if all else fails, you can send your board back to the factory for recalibration — as long as no one

abuses it, we should be able to provide this warranty service free of charge except for shipping costs.

4. Operation without FreeCalypso firmware

The FCDEV3B has been created for the primary purpose of running FreeCalypso software and firmware.

FC firmware came first, running on various preexisting Calypso hardware targets with the help of FC host tools,

and then we have created our own FCDEV3B hardware in order to free ourselves from the limitations of those

preexisting Calypso devices. However, there exists a certain population who seek to use our hardware for the

nonintended and nonapproved purpose of running our competitors’ OsmocomBB software; this chapter

addresses that population.

In the time period between 201704 (when our first FCDEV3B boards were assembled and we were doing

initial bringup) and the beginning of 201903 we provided a limited degree of support for running OBB

software on our hardware, and during that time period we even produced two packages of OBB layer1 software

with our own modifications which sought to improve its radio operation: obbfcmodsr1.tar.bz2 dated 20171124

and obbfcmodsr2.tar.bz2 dated 20190225. However, a series of tests performed on 20190309 using our

CMU200 RF test instrument revealed that OBB’s radio transmissions (with or without our changes, which make

only a very small improvement) are very grossly in violation of GSM specifications, and are highly likely to

cause harmful interference and disruption to GSM or other cellular networks if one were to run this same OBB

software on a Calypso GSM MS device (be it our FCDEV3B or an old Motorola phone) with a real antenna con

nected (as opposed to the cabled connection to the CMU200 instrument in our test setup), transmitting on actual

live airwaves.

On the basis on this observation of OBB’s gross misbehaviour in its radio transmissions, we are now with

drawing our support for that software effective immediately, until and unless the owners and custodians of Osmo

comBB (i.e., those people who believe that it should be continued, maintained and further developed, contrary to

our stance that it should instead be retired to the dustbin of history as a bad project) fix its radio transmissions

and bring them into compliance. As of this writing, our FCDEV3B modems are safe to use on public airwaves

only with our official FreeCalypso firmware, and not with OsmocomBB.

 13

Anyone who chooses to run OBB software on any Calypso GSM MS device with radio transmissions

enabled despite having read this warning will not only be causing interference and disruption to public radio com

munication networks, but doing so knowingly and willingly, which involves a significantly higher level of crimi

nal culpability.

Appendix A: Analog loudspeaker and microphone

TI’s Iota ABB chip (part of the Calypso+Iota chipset around which our board is built) is designed to drive

32 Ω earpiece speakers directly, without needing any external active components, but it cannot do the same for

8 Ω handsfree loudspeakers: the ability to drive such loudspeakers directly was added in TI’s later chipsets, but

is not present in the Iota ABB targeted by FreeCalypso. Instead our FCDEV3B features the same arrangement

that was implemented on TI’s own DSample and Leonardo development boards: the analog voice downlink out

put from the Iota ABB (from the EARN&EARP pins in our case) goes to an external audio amplifier, and the

output of that amplifier is presented on the twopost header at J312, where an 8 Ω loudspeaker needs to be con

nected. The external amplifier needs to be enabled via Calypso GPIO 1, which is controlled with the

AT@SPKR command with our standard firmware.

The loudspeaker connected to our board needs to have a load impedance of 8 Ω or greater, with exactly

8 Ω being the standard choice for sufficiently loud acoustic output in a setup where the board and the speaker

rest on a lab bench, and the speaker needs to be comfortably heard without having to lift it to one’s ear. Any

8 Ω speaker can be used as long as it can handle the drive level put out by our board: the theoretical maximum

that our circuit can drive into an 8 Ω load is 0.81 W (with the Calypso DSP programmed to put out a sine wave

at full scale on the digital voice interface going to the Iota ABB, and with the volume control in the latter set to

the maximum of 0 dB), but for practical uses a 0.5 W speaker rating should be sufficient. However, a physically

larger speaker should be selected in order to produce sufficiently loud acoustic output: as we have learned empiri

cally, a cellphonesized speaker will NOT produce satisfactory output without going through a special mechani

cal and acoustic design effort as would be done for a real cellphone product, thus for operation on a lab bench

without any special acoustic design a larger speaker should be used. We are currently using a 5 cm diameter

round speaker (8 Ω, 0.5 W) sold by SparkFun (part number COM09151), and it produces very good acoustic

output in our application.

Our board also features a microphone input circuit copied from TI’s Leonardo schematics; the actual micro

phone needs to be of the electret condenser type, and needs to be connected to twopost header J313; there is a +

mark on the silk screen indicating the correct polarity. We are not aware of any specific requirements for the

microphone part, but we are currently successfully using CUI CMC9745130T parts from DigiKey; this particu

lar part has been selected for its physically larger size, allowing for easier soldering.

To obtain a working loudspeaker+microphone kit for exercising voice calls on your FCDEV3B, you can

either buy your own speaker and mic parts and do your own soldering and crimping (the latter is needed in order

to produce female connectors that will mate with the twopost headers on our board), or you can buy a fully

assembled kit from Falconia Partners LLC. If you are using one of our kits, please be sure to connect the micro

phone correctly, as it is a polarized component: the little arrow on the female connector in our assembly must

face toward the + mark on the PCB silk screen.

One remaining issue with the voice subsystem is that the audio configuration settings in the Calypso DSP

and in the Iota ABB remain to be tuned for optimal operation. One setting which we already know needs to be

tuned is the Acoustic Echo Cancellation (AEC) feature of the DSP. Given that the FCDEV3B is a development

board that is expected to rest on a lab bench rather than a handheld device that can be held up to a user’s ear,

the expectation is that voice call tests will be performed with a loudspeaker that is loud enough to be heard from

a comfortable distance away. In this setup the output of this loudspeaker will also get picked up by the micro

phone, and the party on the other end of the call will hear a delayed echo of their own voice. This problem is

not unique to our development board arrangement and also occurs in all standard handsfree phone loudspeaker

setups, and the Calypso DSP includes the AEC feature as the solution. However, this AEC is disabled by

default (it is not needed in the classic handheld setup with the earpiece speaker pressed against the user’s ear),

and needs explicit enabling and configuration. The characterization work to come up with a good AEC

configuration has not been done yet; please feel free to beat us to it.

 14

Appendix B: Digital voice interface via MCSI

The Calypso chip features an auxiliary 4wire synchronous serial interface (data in each direction, bit clock

and frame sync) called MCSI. This interface is connected to the DSP part of the Calypso and is controlled by

the DSP code (ROM or downloaded patches); the ARM part of the Calypso where regular firmware code runs

has no direct control over this interface. The DSP ROM code in the Calypso silicon version we are using sup

ports a mode of operation in which MCSI becomes an external digital voice channel interface; TI called it the

Bluetooth mode because they used it in Bluetoothenabled phones to connect the digital voice channel between

the Calypso and their Bluetooth Island chip.

The MCSI signals (4 signal pins plus ground) are brought out to a 5pin header on the FCDEV3B, but the

detailed workings of TI’s ‘‘Bluetooth’’ digital voice channel are not documented anywhere and remain to be

reverseengineered. The MCSI header on the FCDEV3B is J311, and it has the following pinout (pin 1 is

toward the edge of the board, away from the power input connector):

1 MCSI_CLK

2 MCSI_RXD

3 MCSI_TXD

4 MCSI_FSYNCH

5 GND

The signals have 2.8 V native logic levels and are tolerant of 3.3 V, but NOT any higher voltages.

MCSI_RXD is always an input to the Calypso, MCSI_TXD is always an output from the Calypso, but the direc

tion of the bit clock and frame sync signals is determined by the DSP code: in pure hardware terms they are

bidirectional, but given the level of difficulty in developing custom DSP patches, their direction is fixed in prac

tice by the DSP code in use.

Our FreeCalypso Magnetite firmware provides an extended AT command (AT@VPATH) to set the digital

voice path routing mode in the DSP; setting AT@VPATH=2 enables what TI called the Bluetooth headset

mode, in which the digital voice path is connected between GSM and the ‘‘Bluetooth’’ voice channel on MCSI.

Experiments with oscilloscope observation show that when this mode is enabled, MCSI_CLK and

MCSI_FSYNCH become outputs, putting out a 520 kHz bit clock and an 8 kHz frame sync, respectively. How

ever, more investigation is needed before this digital voice interface can be put to practical use:

• The format of voice PCM data put out on the MCSI_TXD pin and expected on the MCSI_RXD pin

remains to be determined experimentally.

• There appears to be a bug in the DSP code (present in the ROM version and not corrected by TI’s

TCS211 patches we are using) that causes the interface to unexpectedly shut down under certain cir

cumstances (the clock output disappears); the exact triggering condition needs to be better understood

before a reliable workaround can be implemented.

When it comes to this notyetunderstood Calypso digital voice interface, our FCDEV3B should be seen as a

development platform to facilitate its reverse engineering.

Appendix C: Calypso JTAG

The JTAG header on the FCDEV3B is J310, and it has the following pinout (pin 1 is toward the power input

connector):

TMS 1 2 nTESTRESET

TDI 3 4 GND

Vio 5 6 NC

TDO 7 8 GND

TCK return 9 10 GND

TCK 11 12 GND

EMU0 13 14 EMU1

 15

All JTAG signals have 2.8 V native logic levels and are tolerant of 3.3 V, but NOT any higher voltages.

The JTAG interface is needed very rarely; it is not needed at all in normal usage and even during intensive

firmware development a need for JTAG arises only very rarely.

